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to feign [engl., verb] » to mock,
pretend, simulate, [...] imitate,
mimic
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Overview

Introduction and Background
Feign, Flexible Event Imitation Engine
Virtual Laboratory for I/O Research

Discussion
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Motivation

The supercomputing langscape.

Mostly cluster systems. Very complex.
» Hardware, Software, Topologies
Combine to suit..

» .. characteristics of applications.

But:
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Motivation

Some problems in supercomputing.

As new systems emerge users and operators want to know how their
applications perform.

» Running actual application complicated for many reasons.
Not portable.

» (Dependencies, system specific optimization, app/data confidential)

» Synthetic benchmarks good for peak performance but not to
prospect actual behavior.

» Developing application specific benchmarks is work intensive.

» When communicating problems to vendors or the open source
community, problems are hard to isolate.

Demand for tools with benchmarking, stress testing and debugging
capabilities.
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Trace replay to mimic applications

The trace preserves the characteristics.
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Trace Replay

A portable solution to catch application characteristics.

Benefits?

» Traces are already very common and portable.
They record the characteristics of an application.
Deterministic by default but jitter can be added.

Easy to modify. Remove confidential information.

v vV v Y

Fully automatic.
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Parallel Trace Replay

Not so many tools available.
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Goals

A flexible event imitation engine (feign). Also a virtual laboratory.

v

Modular to support arbitrary (I/O) libraries. Easy to extend.

v

With parallel workloads/scientific applications in mind.

v

Portable by eliminating dependencies.

v

Efficient, to minimize distortions.

v

Trace manipulation to adjust to other systems and so it can be
integrated into other applications.

One-Time-Effort!
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Analogousness

In many cases the following should be true.

Application Optimzation

Optimzation

Trace
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Trace Replay and Virtual Lab: How to?

Considerable intersection between the two.

Replay Lab

Convenience
» Generators

» Helper Library

University of Hamburg

Replay: Lab:
» Minimal » Experiments
distortions

» Reporting

» Pre-Creation » Reliable 'Model’
» State Management

Replay and Lab:

» Modifiers

» Filter
» Add/remove
» Mutate
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Feign, Flexible Event Imitation Engine
Design: Portable, Modular, Efficient, Assistive
Prototype
Convenience
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Foundation for flexible replay

Abstraction of input, internal representation and output.
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Foundation for flexible replay (2)

Plugins to support arbitrary trace formats and layers.
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Foundation for flexible replay (3)

Modifiers to account for system specific optimizations, etc..

Activity

Datatype :
e At Replayer

' 1
]
Modifiers ! System/
. Library

Semantics/
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Trace Manipulation

For optimal and meaningful playback.

Context-aware operations on the trace and on activities:

» filter/remove
» insert

» modify/mutate

X

Allow plugins periodically to alter the trace.

University of Hamburg Feign - Laboratory for 1/O Research

)\ 4

/

November 16, 2014

16 / 31



Minimize distortions, establish replayability

Pre-process trace, pre-create environment, manage states.

Pre-processing to derive optimal trace (compression opportunities):
1. Create a stripped temporary trace from a full trace in a first run.

2. Replay the stripped trace.

Pre-processing is also needed to allow:
» Environment pre-creation (recreate file system, estimate file sizes)

» State management during playback (e.g. map file handles)
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Activity Pipeline

Putting the pieces together.
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Component Overview

Structural components of feign.

Y

( ! Layer

: : Manager
tmp le+—ISerialize Buffer Rebiay
trace . Manager

1 ]

1 ]

_ -

Plugin Helpers
[ Activity / Dynamic Datatype ]

Byte (" state !
I I
Buffer | ° Manager | precreation
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Plugin Development: Generators

Turns out creating layer plugins is cumbersome.. Automation?

» Instrumented
SIOX Library

wrapped
library.c

“h //@Activity 51[0).¢ —_——
urey | 4 //@Annotation Skeleton wovidecc| B | Provider |
e void func(); Builder \ J
: )
feign wnverc| By | Replayer |
Plugin we ——

ypesh | =+

Generator‘
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Virtual Laboratory for I/O Research
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Automatic Optimisation Engines

How is automatic optimisation done?

1. Collect possible optimisations and store in database.
2. Classify situations/problems and receive possible optimisation.

3. Apply one or more optimisations.

But what when uncertain?

» Let the system experiment on its own!

» Or a least make it easier to conduct many experiments.

What kinds of optimizations? Hints? Feign would allow to apply very
complex optimisations!
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Virtual Lab vs. Conventional Auto-Tuners

Conventional

» Decisions based on past events.

» Sometimes hard to decide if optimisation was really good.

Trace Replay supported Lab
» Base decisions on PAST and also on FUTURE.

» Repeatable. Possible to analyse why optimization was good.
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Virtual Lab

Stack plugins in different ways to craft new tools.
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Virtual Lab (2)

Provide plugins that automatically apply optimizations to traces.

posix_fadvise() Injection
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Virtual Lab (3)

Have reporting plugins to propagate results back to optimization engine.
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Evaluation: POSIX fadvise injection

Find successive 1seek() read() patterns and timely inject fadvise().
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Evaluation: Coalescing
Merge adjacent read() or write() operations. Show that optimzation works by
sampling parameter space for optimum.
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Virtual Lab: More use cases

» POSIX fadvise (stripped reads)

» Coalescing (merge adjacent reads/writes)

» MPT hints (evaluating impact of arbitrary hint combinations)
» Removing Computation (pure I/O kernels)

» Experimenting with Jitter

» Migrating to a shared file (offsets in file)

» Splitting shared file into individual files (rank wise, node wise, etc.)

One-Time-Effort:

» Create optimization strategy ONCE, evaluate on arbitrary
applications.
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Conclusion and Discussion

Summary

v

A flexible replay engine is effective.

v

Supporting POSIX and MPI is possible with plugins.

v

Support for arbitrary traces is possible with plugins.

v

Other applications can integrate feign as a virtual lab.

What is left to do?
» Create mature MPI and POSIX plugins.

» Unify annotation system for instrumentation and replay.
» Multi-threaded processing of the activity pipeline.
» Support for multi-threaded applications.

» Plugin-to-plugin communication.
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Attribution

Some images where taken from the thenounproject.com
» Skull designed by Ana Maria Lora Macias
» Cactus designed by pilotonic
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Evaluation
Test Systems
Scientific Workloads

Implementation
Prototype (Component Overview)
APT and Plugin Development
Plugin Sample
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Evaluation
Test Systems
Scientific Workloads
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Test Systems

Measured was on two different systems, a consumer notebook and on the research
cluster of the working group ”Scientific Computing” located in the DKRZ (German
Climate Computing Center) in Hamburg, Germany.

» WR-Cluster with 10 nodes each featuring:
» 2xIntel Xeon X5650@2.67GH
» 12 GByte RAM
» Seagate Barracuda 7200.12
» Apple Macbook A1370 (Mid-2011) (Ubuntu 13.10)

» 1.8 GHz Core i7 (I7-2677M) (Boosts to 2.8GHz)
» 1333 MHz DDR3 SDRAM
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Scientific Workloads

Parallel replay with MPI and POSIX of SIOX trace files.

Maz-Planck-Institute Ocean Model (MPIOM) was replayed.
» SIOX-provider to read the trace and create feign-activities for the
POSIX and MPI plugin prototypes.

» Negotiate which process replays which activity from the trace with
the MPI-replayer/precreator.

» Pre-create files using the POSIX-precreator.

» Replay the trace with the correct replay plugin, e.g. a POSIX
activity with the loaded POSIX-replayer.
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Implementation
Prototype (Component Overview)
API and Plugin Development
Plugin Sample
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Component Overview

Structural components of feign.
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#include <feign.h>

// provide some meta information
Plugin plugin = {

.name = "Example-Replayer",
.version = "1.2.3",
.intents = FEIGN_REPLAYER,

};

int init(int argc, char *argv[])
feign_register_plugin(&plugin) ;
return O;

}

// expected because of FEIGN_REPLAYER

Activity * replay(Activity * activity) {
// do something and consume activity
return NULL;
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