
Feign - Laboratory for I/O Research
Flexible Event Imitation Engine

Jakob Lüttgau, Julian Kunkel

University of Hamburg
Scientific Computing

November 16, 2014

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 1 / 31



to feign [engl., verb] I to mock,
pretend, simulate, [...] imitate,
mimic

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 2 / 31



Overview

1. Introduction and Background

2. Feign, Flexible Event Imitation Engine

3. Virtual Laboratory for I/O Research

4. Discussion

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 3 / 31



Motivation
The supercomputing langscape.

Mostly cluster systems. Very complex.
I Hardware, Software, Topologies

Combine to suit..
I .. characteristics of applications.

But:

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 4 / 31



Motivation
Some problems in supercomputing.

As new systems emerge users and operators want to know how their
applications perform.

I Running actual application complicated for many reasons.
Not portable.

I (Dependencies, system specific optimization, app/data confidential)
I Synthetic benchmarks good for peak performance but not to

prospect actual behavior.
I Developing application specific benchmarks is work intensive.
I When communicating problems to vendors or the open source

community, problems are hard to isolate.
Demand for tools with benchmarking, stress testing and debugging
capabilities.

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 5 / 31



Trace replay to mimic applications
The trace preserves the characteristics.

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 6 / 31



Trace Replay
A portable solution to catch application characteristics.

Benefits?
I Traces are already very common and portable.
I They record the characteristics of an application.
I Deterministic by default but jitter can be added.
I Easy to modify. Remove confidential information.
I Fully automatic.

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 7 / 31



Parallel Trace Replay
Not so many tools available.

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 8 / 31



Goals
A flexible event imitation engine (feign). Also a virtual laboratory.

I Modular to support arbitrary (I/O) libraries. Easy to extend.
I With parallel workloads/scientific applications in mind.
I Portable by eliminating dependencies.
I Efficient, to minimize distortions.
I Trace manipulation to adjust to other systems and so it can be

integrated into other applications.

One-Time-Effort!

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 9 / 31



Analogousness
In many cases the following should be true.

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 10 / 31



Trace Replay and Virtual Lab: How to?
Considerable intersection between the two.

Lab

Replay:
I Minimal

distortions
I Pre-Creation
I State Management

Lab:
I Experiments
I Reporting
I Reliable ’Model’

Convenience
I Generators
I Helper Library

Replay and Lab:
I Modifiers

I Filter
I Add/remove
I Mutate

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 11 / 31



1. Introduction and Background
Motivation
Trace Replay
State of the Art
Goals

2. Feign, Flexible Event Imitation Engine
Design: Portable, Modular, Efficient, Assistive
Prototype
Convenience

3. Virtual Laboratory for I/O Research

4. Discussion

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 12 / 31



Foundation for flexible replay
Abstraction of input, internal representation and output.

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 13 / 31



Foundation for flexible replay (2)
Plugins to support arbitrary trace formats and layers.

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 14 / 31



Foundation for flexible replay (3)
Modifiers to account for system specific optimizations, etc..

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 15 / 31



Trace Manipulation
For optimal and meaningful playback.

Context-aware operations on the trace and on activities:
I filter/remove
I insert
I modify/mutate

Allow plugins periodically to alter the trace.

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 16 / 31



Minimize distortions, establish replayability
Pre-process trace, pre-create environment, manage states.

Pre-processing to derive optimal trace (compression opportunities):
1. Create a stripped temporary trace from a full trace in a first run.
2. Replay the stripped trace.

Pre-processing is also needed to allow:
I Environment pre-creation (recreate file system, estimate file sizes)
I State management during playback (e.g. map file handles)

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 17 / 31



Activity Pipeline
Putting the pieces together.

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 18 / 31



Component Overview
Structural components of feign.

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 19 / 31



Plugin Development: Generators
Turns out creating layer plugins is cumbersome.. Automation?

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 20 / 31



1. Introduction and Background
Motivation
Trace Replay
State of the Art
Goals

2. Feign, Flexible Event Imitation Engine
Design: Portable, Modular, Efficient, Assistive
Prototype
Convenience

3. Virtual Laboratory for I/O Research

4. Discussion

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 21 / 31



Automatic Optimisation Engines
How is automatic optimisation done?

1. Collect possible optimisations and store in database.
2. Classify situations/problems and receive possible optimisation.
3. Apply one or more optimisations.

But what when uncertain?
I Let the system experiment on its own!
I Or a least make it easier to conduct many experiments.

What kinds of optimizations? Hints? Feign would allow to apply very
complex optimisations!

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 22 / 31



Virtual Lab vs. Conventional Auto-Tuners

Conventional
I Decisions based on past events.
I Sometimes hard to decide if optimisation was really good.

Trace Replay supported Lab
I Base decisions on PAST and also on FUTURE.
I Repeatable. Possible to analyse why optimization was good.

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 23 / 31



Virtual Lab
Stack plugins in different ways to craft new tools.

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 24 / 31



Virtual Lab (2)
Provide plugins that automatically apply optimizations to traces.

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 25 / 31



Virtual Lab (3)
Have reporting plugins to propagate results back to optimization engine.

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 26 / 31



Evaluation: POSIX fadvise injection
Find successive lseek() read() patterns and timely inject fadvise().

0

100

200

300

400

Application Replay

R
un

tim
e 

in
 s

what

Baseline

Optimized

..
fadvise(pos,len, WILL_NEED)

.. ..
lseek(pos) lseek(pos)
read(bytes) read(bytes)
.. ..

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 27 / 31



Evaluation: Coalescing
Merge adjacent read() or write() operations. Show that optimzation works by
sampling parameter space for optimum.

●●●●●●●●●●●●●●●●●●●
●●●●●

0.0

0.5

1.0

10 1k 100k 10M
buffer size

ru
nt

im
e 

in
 s

.. ..
write(10) write(30)
write(10) ..
write(10)
..

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 28 / 31



Virtual Lab: More use cases

I POSIX fadvise (stripped reads)
I Coalescing (merge adjacent reads/writes)
I MPI hints (evaluating impact of arbitrary hint combinations)
I Removing Computation (pure I/O kernels)
I Experimenting with Jitter
I Migrating to a shared file (offsets in file)
I Splitting shared file into individual files (rank wise, node wise, etc.)

One-Time-Effort:
I Create optimization strategy ONCE, evaluate on arbitrary

applications.

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 29 / 31



Conclusion and Discussion

Summary
I A flexible replay engine is effective.
I Supporting POSIX and MPI is possible with plugins.
I Support for arbitrary traces is possible with plugins.
I Other applications can integrate feign as a virtual lab.

What is left to do?
I Create mature MPI and POSIX plugins.

I Unify annotation system for instrumentation and replay.
I Multi-threaded processing of the activity pipeline.
I Support for multi-threaded applications.
I Plugin-to-plugin communication.

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 30 / 31



Attribution

Some images where taken from the thenounproject.com
I Skull designed by Ana Maŕıa Lora Macias
I Cactus designed by pilotonic

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 31 / 31



Appendix

5. Evaluation
Test Systems
Scientific Workloads

6. Implementation
Prototype (Component Overview)
API and Plugin Development
Plugin Sample

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 1 / 7



5. Evaluation
Test Systems
Scientific Workloads

6. Implementation
Prototype (Component Overview)
API and Plugin Development
Plugin Sample

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 2 / 7



Test Systems
Measured was on two different systems, a consumer notebook and on the research
cluster of the working group ”Scientific Computing” located in the DKRZ (German
Climate Computing Center) in Hamburg, Germany.

I WR-Cluster with 10 nodes each featuring:
I 2×Intel Xeon X5650@2.67GH
I 12 GByte RAM
I Seagate Barracuda 7200.12

I Apple Macbook A1370 (Mid-2011) (Ubuntu 13.10)
I 1.8 GHz Core i7 (I7-2677M) (Boosts to 2.8GHz)
I 1333 MHz DDR3 SDRAM

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 3 / 7



Scientific Workloads
Parallel replay with MPI and POSIX of SIOX trace files.

Max-Planck-Institute Ocean Model (MPIOM) was replayed.
I SIOX-provider to read the trace and create feign-activities for the

POSIX and MPI plugin prototypes.
I Negotiate which process replays which activity from the trace with

the MPI-replayer/precreator.
I Pre-create files using the POSIX-precreator.
I Replay the trace with the correct replay plugin, e.g. a POSIX

activity with the loaded POSIX-replayer.

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 4 / 7



5. Evaluation
Test Systems
Scientific Workloads

6. Implementation
Prototype (Component Overview)
API and Plugin Development
Plugin Sample

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 5 / 7



Component Overview
Structural components of feign.

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 6 / 7



#include <feign.h>

// provide some meta information
Plugin plugin = {

.name = "Example-Replayer",

.version = "1.2.3",

.intents = FEIGN_REPLAYER,
};

int init(int argc, char *argv[])
feign_register_plugin(&plugin);
return 0;

}

// expected because of FEIGN_REPLAYER
Activity * replay(Activity * activity) {

// do something and consume activity
return NULL;

}

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 7 / 7


	Introduction and Background
	Motivation
	Trace Replay
	State of the Art
	Goals

	Feign, Flexible Event Imitation Engine
	Design: Portable, Modular, Efficient, Assistive
	Prototype
	Convenience

	Virtual Laboratory for I/O Research
	Discussion
	Evaluation
	Test Systems
	Scientific Workloads

	Implementation
	Prototype (Component Overview)
	API and Plugin Development
	Plugin Sample


