Feign - Laboratory for 1/O Research

Flexible Event Imitation Engine

Jakob Liittgau, Julian Kunkel

University of Hamburg
Scientific Computing

November 16, 2014

UH

iti
2N Universitdit Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014

1/31

to feign [engl., verb] » to mock,
pretend, simulate, [...] imitate,
mimic

University of Hamburg Feign - Laboratory for 1/O Research November 16, 2014 2/31

Overview

Introduction and Background
Feign, Flexible Event Imitation Engine
Virtual Laboratory for I/O Research

Discussion

University of Hamburg Feign - Laboratory for 1/O Research November 16, 2014 3/31

Motivation

The supercomputing langscape.

Mostly cluster systems. Very complex.
» Hardware, Software, Topologies
Combine to suit..

» .. characteristics of applications.

But:

ok -
qva((alo{e

]

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 4 /31

Motivation

Some problems in supercomputing.

As new systems emerge users and operators want to know how their
applications perform.

» Running actual application complicated for many reasons.
Not portable.

» (Dependencies, system specific optimization, app/data confidential)

» Synthetic benchmarks good for peak performance but not to
prospect actual behavior.

» Developing application specific benchmarks is work intensive.

» When communicating problems to vendors or the open source
community, problems are hard to isolate.

Demand for tools with benchmarking, stress testing and debugging
capabilities.

University of Hamburg Feign - Laboratory for 1/O Research November 16, 2014 5/31

Trace replay to mimic applications

The trace preserves the characteristics.

|
|
open B
read
read
close

Trace

University of Hamburg Feign - Laboratory for I/O Research

Activity

Activity

November 16, 2014

Trace Replay

A portable solution to catch application characteristics.

Benefits?

» Traces are already very common and portable.
They record the characteristics of an application.
Deterministic by default but jitter can be added.

Easy to modify. Remove confidential information.

v vV v Y

Fully automatic.

University of Hamburg Feign - Laboratory for 1/O Research November 16, 2014

7/31

Parallel Trace Replay

Not so many tools available.

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 8 /31

Goals

A flexible event imitation engine (feign). Also a virtual laboratory.

v

Modular to support arbitrary (I/O) libraries. Easy to extend.

v

With parallel workloads/scientific applications in mind.

v

Portable by eliminating dependencies.

v

Efficient, to minimize distortions.

v

Trace manipulation to adjust to other systems and so it can be
integrated into other applications.

One-Time-Effort!

University of Hamburg Feign - Laboratory for 1/O Research November 16, 2014 9/31

Analogousness

In many cases the following should be true.

Application Optimzation

Optimzation

Trace

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014

10 /31

Trace Replay and Virtual Lab: How to?

Considerable intersection between the two.

Replay Lab

Convenience
» Generators

» Helper Library

University of Hamburg

Replay: Lab:
» Minimal » Experiments
distortions

» Reporting

» Pre-Creation » Reliable 'Model’
» State Management

Replay and Lab:

» Modifiers

» Filter
» Add/remove
» Mutate

Feign - Laboratory for 1/O Research November 16, 2014

11 /31

Feign, Flexible Event Imitation Engine
Design: Portable, Modular, Efficient, Assistive
Prototype
Convenience

University of Hamburg Feign - Laboratory for 1/O Research

November 16, 2014

12 /31

Foundation for flexible replay

Abstraction of input, internal representation and output.

————— ¢ - N

read Parser/ + Activity Semantlcs/|

i im . ; !

oo Provider : Datatype : | Replayer
—— — J . —

University of Hamburg Feign - Laboratory for I/O Research

System/

Library

November 16, 2014

13 /31

Foundation for flexible replay (2)

Plugins to support arbitrary trace formats and layers.

) \\

NIk Activit H !
|] Parser/ ! Datat y -« Semantics/
L Provider | Datatype ; L Replayer

1
! System/
1

Library

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 14 /31

Foundation for flexible replay (3)

Modifiers to account for system specific optimizations, etc..

Activity

Datatype :
e At Replayer

' 1
]
Modifiers ! System/
. Library

Semantics/

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 15 /31

Trace Manipulation

For optimal and meaningful playback.

Context-aware operations on the trace and on activities:

» filter/remove
» insert

» modify/mutate

X

Allow plugins periodically to alter the trace.

University of Hamburg Feign - Laboratory for 1/O Research

)\ 4

/

November 16, 2014

16 / 31

Minimize distortions, establish replayability

Pre-process trace, pre-create environment, manage states.

Pre-processing to derive optimal trace (compression opportunities):
1. Create a stripped temporary trace from a full trace in a first run.

2. Replay the stripped trace.

Pre-processing is also needed to allow:
» Environment pre-creation (recreate file system, estimate file sizes)

» State management during playback (e.g. map file handles)

University of Hamburg Feign - Laboratory for 1/O Research November 16, 2014 17 / 31

Activity Pipeline

Putting the pieces together.

=—— R
f:\ ——————— -I>| Environment |
 __

~

- p—F
rea [] Parser/ 4
cose | Provider B

r;\\

Semantics/ |

Replayer
LI

System/

Modifier L

online (time is critical)

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 18 / 31

Component Overview

Structural components of feign.

Y

(! Layer

: : Manager
tmp le+—ISerialize Buffer Rebiay
trace . Manager

1]

1]

_ -

Plugin Helpers
[Activity / Dynamic Datatype]

Byte (" state !
I I
Buffer | ° Manager | precreation

Helpers

[—

University of Hamburg Feign - Laboratory for I/O Research

H

feign
API

Plugin 1

Plugin 2

Plugin 3

November 16, 2014

19 /31

Plugin Development: Generators

Turns out creating layer plugins is cumbersome.. Automation?

» Instrumented
SIOX Library

wrapped
library.c

“h //@Activity 51[0).¢ —_——
urey | 4 //@Annotation Skeleton wovidecc| B | Provider |
e void func(); Builder \ J
:)
feign wnverc| By | Replayer |
Plugin we ——

ypesh | =+

Generator‘

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 20 /31

Virtual Laboratory for I/O Research

University of Hamburg Feign - Laboratory for |/O Research November 16, 2014 21 /31

Automatic Optimisation Engines

How is automatic optimisation done?

1. Collect possible optimisations and store in database.
2. Classify situations/problems and receive possible optimisation.

3. Apply one or more optimisations.

But what when uncertain?

» Let the system experiment on its own!

» Or a least make it easier to conduct many experiments.

What kinds of optimizations? Hints? Feign would allow to apply very
complex optimisations!

University of Hamburg Feign - Laboratory for 1/O Research November 16, 2014 22 /31

Virtual Lab vs. Conventional Auto-Tuners

Conventional

» Decisions based on past events.

» Sometimes hard to decide if optimisation was really good.

Trace Replay supported Lab
» Base decisions on PAST and also on FUTURE.

» Repeatable. Possible to analyse why optimization was good.

University of Hamburg Feign - Laboratory for 1/O Research November 16, 2014

23 /31

Virtual Lab

Stack plugins in different ways to craft new tools.

e N (..) e e e e e e e e e = - =
- -| SI0X feign { Optimization
L Provider) API Strategy

POSIX
L Replayer

—_—
! C Source
L Generator

T
Reporting
Plugin

University of Hamburg Feign - Laboratory for 1/O Research November 16, 2014

24 /31

Virtual Lab (2)

Provide plugins that automatically apply optimizations to traces.

posix_fadvise() Injection

N\

I'é
I\ Aggregating 1/0

I
I
L
p F Y B
- -| SI0X feign { Optimization 3
L Provider) API Strategy /I

—_—
L{ POSIX
v Replayer

—_—
! C Source
L Generator

— U

T
Reporting
Plugin

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 25 /31

Virtual Lab (3)

Have reporting plugins to propagate results back to optimization engine.

I'a Y

| posix_fadvise() Injection |

8 J

e .:\

| Aggregating 1/0 |

L J

e .:\

[Buffer] |\ J|

F ~
feign { Optimization 3
API Strategy /I

—_—
L{ POSIX
v Replayer

\|
S
1
\|
J

L —
! C Source
L Generator

Aggregating 1/0

o Yo Yo

T
I Reporting
| Plugin
= J

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 26 / 31

Evaluation: POSIX fadvise injection

Find successive 1seek() read() patterns and timely inject fadvise().

" 400 -

£ 300 -

Qo

E 200-

E 100

@

h 1 1
Application Replay
fadvise(pos,len, WILL_NEED)
1seek(pos) 1seek(pos)

read(bytes) read(bytes)

University of Hamburg Feign - Laboratory for I/O Research November 16, 2014 27 /31

Evaluation: Coalescing
Merge adjacent read() or write() operations. Show that optimzation works by
sampling parameter space for optimum.

TTTT T 000000000,
» eo000
o
£
=05-
C
2
0.0 -
I I I I
10 1k 100k 10M
buffer size
v;&ite(lo) x;n':ite(SO)
write(10)
write(10)

University of Hamburg Feign - Laboratory for 1/O Research November 16, 2014

28 / 31

Virtual Lab: More use cases

» POSIX fadvise (stripped reads)

» Coalescing (merge adjacent reads/writes)

» MPT hints (evaluating impact of arbitrary hint combinations)
» Removing Computation (pure I/O kernels)

» Experimenting with Jitter

» Migrating to a shared file (offsets in file)

» Splitting shared file into individual files (rank wise, node wise, etc.)

One-Time-Effort:

» Create optimization strategy ONCE, evaluate on arbitrary
applications.

University of Hamburg Feign - Laboratory for 1/O Research November 16, 2014 29 /31

Conclusion and Discussion

Summary

v

A flexible replay engine is effective.

v

Supporting POSIX and MPI is possible with plugins.

v

Support for arbitrary traces is possible with plugins.

v

Other applications can integrate feign as a virtual lab.

What is left to do?
» Create mature MPI and POSIX plugins.

» Unify annotation system for instrumentation and replay.
» Multi-threaded processing of the activity pipeline.
» Support for multi-threaded applications.

» Plugin-to-plugin communication.

University of Hamburg Feign - Laboratory for 1/O Research November 16, 2014

30 /31

Attribution

Some images where taken from the thenounproject.com
» Skull designed by Ana Maria Lora Macias
» Cactus designed by pilotonic

University of Hamburg Feign - Laboratory for 1/O Research November 16, 2014 31 /31

Appendix

Evaluation
Test Systems
Scientific Workloads

Implementation
Prototype (Component Overview)
APT and Plugin Development
Plugin Sample

University of Hamburg Feign - Laboratory for 1/O Research

November 16, 2014

1/7

Evaluation
Test Systems
Scientific Workloads

University of Hamburg Feign - Laboratory for |/O Research November 16, 2014 2/7

Test Systems

Measured was on two different systems, a consumer notebook and on the research
cluster of the working group ”Scientific Computing” located in the DKRZ (German
Climate Computing Center) in Hamburg, Germany.

» WR-Cluster with 10 nodes each featuring:
» 2xIntel Xeon X5650@2.67GH
» 12 GByte RAM
» Seagate Barracuda 7200.12
» Apple Macbook A1370 (Mid-2011) (Ubuntu 13.10)

» 1.8 GHz Core i7 (I7-2677M) (Boosts to 2.8GHz)
» 1333 MHz DDR3 SDRAM

University of Hamburg Feign - Laboratory for 1/O Research November 16, 2014

3/7

Scientific Workloads

Parallel replay with MPI and POSIX of SIOX trace files.

Maz-Planck-Institute Ocean Model (MPIOM) was replayed.
» SIOX-provider to read the trace and create feign-activities for the
POSIX and MPI plugin prototypes.

» Negotiate which process replays which activity from the trace with
the MPI-replayer/precreator.

» Pre-create files using the POSIX-precreator.

» Replay the trace with the correct replay plugin, e.g. a POSIX
activity with the loaded POSIX-replayer.

University of Hamburg Feign - Laboratory for 1/O Research November 16, 2014 4/7

Implementation
Prototype (Component Overview)
API and Plugin Development
Plugin Sample

University of Hamburg Feign - Laboratory for 1/O Research November 16, 2014 5/7

Component Overview

Structural components of feign.

Y

(! Layer

: : Manager
tmp le+—ISerialize Buffer Rebiay
trace . Manager

1]

1]

_ -

Plugin Helpers
[Activity / Dynamic Datatype]

Byte (" state !
I I
Buffer | ° Manager | precreation

Helpers

[—

University of Hamburg Feign - Laboratory for I/O Research

H

feign
API

Plugin 1

Plugin 2

Plugin 3

November 16, 2014

6/7

#include <feign.h>

// provide some meta information
Plugin plugin = {

.name = "Example-Replayer",
.version = "1.2.3",
.intents = FEIGN_REPLAYER,

};

int init(int argc, char *argv[])
feign_register_plugin(&plugin) ;
return O;

}

// expected because of FEIGN_REPLAYER

Activity * replay(Activity * activity) {
// do something and consume activity
return NULL;

University of Hamburg Feign - Laboratory for 1/O Research November 16, 2014

7/7

	Introduction and Background
	Motivation
	Trace Replay
	State of the Art
	Goals

	Feign, Flexible Event Imitation Engine
	Design: Portable, Modular, Efficient, Assistive
	Prototype
	Convenience

	Virtual Laboratory for I/O Research
	Discussion
	Evaluation
	Test Systems
	Scientific Workloads

	Implementation
	Prototype (Component Overview)
	API and Plugin Development
	Plugin Sample

