
Using Property Graphs for Rich Metadata
Management in HPC Systems

Dong Dai, Robert B. Ross, Philip Carns, Dries Kimpe, and Yong Chen

1

Rich Metadata in HPC

• The data used to describe other data

• Simple Metadata

• Rich Metadata

• HPC systems heavily rely on these metadata

• inode attributes for file management

• location information for directories and
files stored across metadata server

• provenance information partially collected
and stored

- A. Leung, et. al. Magellan: A Searchable Metadata Architecture for Large-Scale File Systems

- Wf4Ever Research Object Model 1.0, http://wf4ever.github.io/ro/

- S. A. Weil, et. al. Ceph: A Scalable, High-Performance Distributed File System

2

http://wf4ever.github.io/ro/

Rich Metadata in HPC

Programs
Processes

Threads

Users

Data Files

Machines

HPC

1. Diverse metadata need to be managed;
2. Relationships need to be captured

3

Rich Metadata in HPC

Programs
Processes

Threads

Users

Data Files

Machines

HPC

1. Diverse metadata need to be managed;
2. Relationships need to be captured

name, id, group, permission, … machine name, ip_addr, dc, rack, …

job id, params, config, inputs,
outputs, start_ts, finish_ts, …

file name, location, size, permission, parent, children, …

process id, job, machine, reads,
writes, start_ts, finish_ts, …

3

Rich Metadata in HPC

Programs
Processes

Threads

Users

Data Files

Machines

HPC

1. Diverse metadata need to be managed;
2. Relationships need to be captured

name, id, group, permission, … machine name, ip_addr, dc, rack, …

job id, params, config, inputs,
outputs, start_ts, finish_ts, …

file name, location, size, permission, parent, children, …

process id, job, machine, reads,
writes, start_ts, finish_ts, …

Relationships (Provenance)

3

Rich Metadata Challenges

• Metadata Integration
• diverse metadata should be collected from different components
• diverse metadata should be managed in a unified way

• Storage System Pressure
• large volume of metadata generated from different components
• high concurrent insert rates from parallel applications

• Efficient Processing and Querying
• some operations exist in the critical execution path of applications
• some operations require complex query and searching

4

Graph-based Solution

• Based on Property Graph Model
time:5-years
type:fan-of-team name:Cowboy

type:football
name:Alice
location:EU

time:3-years
type:friends

time:2-years
type:player-of-team

name:Bob
location:US

5

Graph-based Solution

• Based on Property Graph Model
Vertex

time:5-years
type:fan-of-team name:Cowboy

type:football
name:Alice
location:EU

time:3-years
type:friends

time:2-years
type:player-of-team

name:Bob
location:US

Edge

Properties/Attributes

5

Graph-based Solution

• Based on Property Graph Model
Vertex Motivation:

• Metadata Integration
• Storage Pressure
• Graph-based Traversal

time:5-years
type:fan-of-team name:Cowboy

type:football
name:Alice
location:EU

time:3-years
type:friends

time:2-years
type:player-of-team

name:Bob
location:US

Edge

Properties/Attributes

5

Graph-based Solution

• Based on Property Graph Model
Vertex Motivation:

• Metadata Integration
• Storage Pressure
• Graph-based Traversal

time:5-years
type:fan-of-team name:Cowboy

type:football
name:Alice
location:EU

time:3-years
type:friends

time:2-years
type:player-of-team

name:Bob
location:US

Edge

Properties/Attributes

5

Graph-based Solution

• Based on Property Graph Model

User Entity

Execution Entity

File Entity
run

exe

readread

write

write

run

name:john
group:admin

name:dset-1
size:1020M
..., ...

name:job201405
params:-n 1024
..., ...

name:app-01
size:256KB
..., ...

exe

ts:20140501
writeSize:7M
..., ...

name:sam
group:cgroup

Vertex Motivation:
• Metadata Integration
• Storage Pressure
• Graph-based Traversal

time:5-years
type:fan-of-team name:Cowboy

type:football
name:Alice
location:EU

time:3-years
type:friends

time:2-years
type:player-of-team

name:Bob
location:US

Edge

Properties/Attributes

5

Map HPC Metadata to Graph

6

Map HPC Metadata to Graph
• Entity => Vertex

• Data Object: represents the basic data unit in storage
• Executions: represents applications including Jobs, Processes, Threads
• User: represents real end user of a system
• Users allowed to define their own entities

6

Map HPC Metadata to Graph
• Entity => Vertex

• Data Object: represents the basic data unit in storage
• Executions: represents applications including Jobs, Processes, Threads
• User: represents real end user of a system
• Users allowed to define their own entities

• Relationship => Edge
• Relationships between different entities are mapped as edges
• User runs Executions. An edge with type ‘Run’ is created between them
• Reversed relationships also are defined
• Users allowed to define their own relationships

6

Map HPC Metadata to Graph
• Entity => Vertex

• Data Object: represents the basic data unit in storage
• Executions: represents applications including Jobs, Processes, Threads
• User: represents real end user of a system
• Users allowed to define their own entities

• Relationship => Edge
• Relationships between different entities are mapped as edges
• User runs Executions. An edge with type ‘Run’ is created between them
• Reversed relationships also are defined
• Users allowed to define their own relationships

• Attributes => Property
• On both Entity and Relationship
• Stored as Key-Value pairs attached on vertices and edges

6

Create an Example Graph

• Each log file => one Job

• Each uid => one User
• All Ranks => Processes

• jobid, start_time, end_time, exe

• nprocs, file_access
• File and exe => Data Object
• Synthetically create directory structure

• data files visited by the same execution will be
placed under the same directory

• directories accessed by the same user are placed
under one directory

Complete set of logs from Intrepid in 2013
42% of all core-hours consumed in 2013

User Entity

Execution Entity

File Entity
run

exe

readread

write

write

run

name:John
id:330862395

name:203863...
fs-type:gpfs
..., ...

id:2726768805
params:-n 2048
..., ...

name:2111648390
..., ...

exe

ts:20130101...
writeSize:7M

name:sam
id:430823375

7

Sample Graph: Size

Applications
User

Processes (I/O Ranks)
Files

detailed level

Processes (All Ranks)

8

Sample Graph: Structure

• Common Attribute

• most entities have small
degree

• small number of entities
have much huge degree

• Skewed power-law distribution

• many nature graphs belong
to this category

• obey:

• Further investigation also
confirm they fit the power-
law distribution

9

Sample Graph: Structure

• Common Attribute

• most entities have small
degree

• small number of entities
have much huge degree

• Skewed power-law distribution

• many nature graphs belong
to this category

• obey:

• Further investigation also
confirm they fit the power-
law distribution

9

Sample Graph: Structure

• Common Attribute

• most entities have small
degree

• small number of entities
have much huge degree

• Skewed power-law distribution

• many nature graphs belong
to this category

• obey:

• Further investigation also
confirm they fit the power-
law distribution

9

Operations on the Graph: Namespace Traversal

Locate -> Traversal -> Filter -> Traversal

10

• Hierarchical Namespace Traversal

• Present logical layout of data sets to users
• traditional POSIX-style tree-structure directory

• The metadata graph already contains
• belongs/contains relationships between Data Objects vertices
• directory can be considered as Data Object entity too

• locate files by given path
1. locate the root directory in the graph
2. repeatedly travel through contains edges from directory vertices to directory or

files vertices

Operations on the Graph: Data Audit

• Data Audit

• The metadata graph already contains
• run relationships between Users and Executions
• read/write relationships between Executions and Data Objects
• additional attributes are also recorded with these relationships

• locate files accessed by a specific user in a given time frame
1. locate the given user in the graph
2. travel through run edges from User to Execution
3. filter execution based on the time frame
4. travel through read edges from Executions to Data Objects

Locate -> Traversal -> Filter -> Traversal

11

• Provenance Support

• Wide range of use cases
• data sharing, reproducibility, work-flow

• The metadata graph already contains
• Relationships between different entities
• User-defined attributes and relationships

• #8 in the first Provenance Challenge
1. Use graph to abstract the workflow executions
2. Search all Executions with model “AlignWarp”
3. Travel through read edges to Data Objects entities
4. Filter based on property ‘center’ (‘UChicago’)

Search Attributes -> Traversal -> Filter -> Traversal

Operations on the Graph: Provenance Search

#8 Problems: Given a fMRI workflow
with multiple stages processing.

Try to find the Execution whose model
is ‘AlignWarp’ and inputs have
annotation [‘center’:’UChicago’]

12

• Provenance Support

• Wide range of use cases
• data sharing, reproducibility, work-flow

• The metadata graph already contains
• Relationships between different entities
• User-defined attributes and relationships

• #8 in the first Provenance Challenge
1. Use graph to abstract the workflow executions
2. Search all Executions with model “AlignWarp”
3. Travel through read edges to Data Objects entities
4. Filter based on property ‘center’ (‘UChicago’)

Search Attributes -> Traversal -> Filter -> Traversal

Operations on the Graph: Provenance Search

#8 Problems: Given a fMRI workflow
with multiple stages processing.

Try to find the Execution whose model
is ‘AlignWarp’ and inputs have
annotation [‘center’:’UChicago’]

12

• Provenance Support

• Wide range of use cases
• data sharing, reproducibility, work-flow

• The metadata graph already contains
• Relationships between different entities
• User-defined attributes and relationships

• #8 in the first Provenance Challenge
1. Use graph to abstract the workflow executions
2. Search all Executions with model “AlignWarp”
3. Travel through read edges to Data Objects entities
4. Filter based on property ‘center’ (‘UChicago’)

Search Attributes -> Traversal -> Filter -> Traversal

Operations on the Graph: Provenance Search

#8 Problems: Given a fMRI workflow
with multiple stages processing.

Try to find the Execution whose model
is ‘AlignWarp’ and inputs have
annotation [‘center’:’UChicago’]

12

Requirements

Read • Search/Locate, Travel, Filter Pattern
• Search graph vertices and edges by their attributes => Indexing
• Fast locate vertices and edges by global ID => Partitioning
• Efficient multi-step traversal in large graph => Traversal Speed
• Customized filter function during traversal => Filtering

• HPC Environment
• High Volume: rich metadata are actually ‘big data’
• Lots of Clients: millions of cores generate metadata concurrently
• High Contention: clients modify the same vertex or edge at the same time

• Creating files under the same directory
• All applications read/write the same file

Write

13

Existing Graph Infrastructure

Google Pregel

X-Stream

Graph Processing Frameworks

Graph Databases

On-going Work

14

Proposed Solutions

• Property Graph Model
• Distributed Writes/Reads
• User-defined Indexing
• Graph Traversal

Basic Needs

• High Contention Writes
• Efficient Graph Traversal
• Consider the Graph Structure

Performance Requirements

• Burst Write Partition Strategy
• Fast Server-side Traversal
• Caching strategy for power-law like graphs

Proposed Solution

On-going Work

+

Existing Graph
Infrastructure
(Titan + Cassandra)

+

15

Prototyped Graph Infrastructure
On-going Work

SQL-Like
APIs

Table-based
Abstraction

Fast
Server-side
Traversal

Caching
Strategy

Partition For
Burst Write

16

Conclusion

• We observed that a property graph representation seems to be a good match
for rich metadata in HPC storage

• We generated an example metadata property graph using access data from a
real, large-scale system over a year period

• We observed properties of this graph, compared it to graphs in other contexts,
and identified some challenges for processing these graphs for HPC metadata
storage

17

References

[1] C. Demetrescu, A. V. Goldberg, and D. S. Johnson, The Shortest Path Problem: Ninth
DIMACS Implementation Challenge. American Mathematical Soc., 2009, vol. 74.

[2] “Twitter Statistics,” http://www.statisticbrain.com/twitter-statistics/.

[3] A. Ching, “Giraph: Production-Grade Graph ProcessingInfrastructure for Trillion Edge
Graphs,” in ATPESC, ser.ATPESC ’14, 2014.

[4] J.-L. Guillaume, M. Latapy et al., “The Web Graph: anOverview,” in Actes
d’ALGOTEL’02, 2002.

[5] A. Leung, I. Adams, and E. L. Miller, “Magellan: A Searchable Metadata Architecture for
Large-Scale File Systems,” University of California, Santa Cruz, Tech. Rep. UCSC-
SSRC-09-07, 2009.

[6] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwasnikowska, S. Miles, P.
Missier, J. My- ers et al., “The Open Provenance Model Core Specifi- cation (v1. 1),”
Future Generation Computer Systems, vol. 27, no. 6, pp. 743–756, 2011.

[7] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn, “Ceph: A Ccalable,
High-Performance Distributed File System,” in Proceedings of the 7th symposium on
Operating Systems Design and Implemen- tation. USENIX Association, 2006, pp. 307–320.

18

http://www.statisticbrain.com/twitter-statistics/

Thanks & Questions

19

