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2 SOS: The Scalable Object Store 

Introduction 

 
 
 
 
 

• What is Big Data 
– Volume, variety, and velocity 
– Good support for statistical inference/induction 

• As opposed to traditional descriptive statistics 
– Exposes some weaknesses in existing HPC storage systems 

“Scientific discovery in energy research and a 
wide range of other fields increasingly depends on 
effectively managing and searching large datasets 
for new insights.” 
   - Dr. Steven Chu, Secretary of Energy 
     Big Data Research Initiative, March 29, 2012   
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Big Data HPC Use Cases 

1. Scientific Application Checkpointing 
– Codes often time-step based simulation  
– Bursty I/O (write for 5 minutes, once an hour) 
– Almost entirely storage system write limited 
– Large fraction of the memory space of the entire application 

streaming to storage 

2. Big Data Analysis 
– Data mining, parallel data analysis, statistical induction 
– Ideally, Map-Reduce 
– Large block storage system reads 
– Almost continuous storage system load 
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Interference Scenario 

Compute Nodes 

Storage Nodes 
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Interference Scenario 

Storage Nodes 

Science Simulation 
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Read(fd1, buf, len); 

Read(fd2, buf, len); 
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Interference Scenario 

Science Simulation 

Inferential 
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Write(fd3, buf, len); 
Read(fd1, buf, len); 

Read(fd2, buf, len); 
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Interference Scenario 
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Inferential 
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Write(fd, buf, len); 
Read(fd1, buf, len); 

Read(fd2, buf, len); 
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I/O Interference Reality 

• Why can’t scientific applications just overlap 
computation with I/O? 
– A time-step based simulation doesn’t checkpoint after every 

time-step, just after some time-steps 
– Next program state depends on previous program state 
– Significant memory pressure 
– Coordination across multiple compute nodes makes these 

problems worse rather than better 

• Doesn’t CFQ scheduling make this a non-issue? 
– The storage servers use the same PID 

• Alternative solutions like ADIOS circumvent FS services 
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Read/Write I/O interference 

• Low-end storage array 
• Simultaneous access falls 

off immediately 

• High-end solid state 
storage (FusionIO Octal) 

• Performance loss due to 
large queue depths 
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A Scalable Object Store 

• HPC Storage + Analytics 
• SOS Goals: 

1. 100% Asynchronous 
access 

2. Provide storage quality 
of service (QoS) 

3. Object resilience with 
multi-tiered storage 

4. In transit object data 
transformation 

 
Volume 

 
 

Velocity 

 
Variety 

Big Data 
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Quality of  Service 

• Two factors make QoS tractable: 
– SOS I/O is fundamentally async and server-directed 
– Object semantic takes away consistency between two clients 

writing to same store 

• Lot’s of existing work on how to do this for a single 
server with multiple clients 
– No magic, we just take a slotted approach to multiple access 

(like ALOHA) 
– Don’t try to make it perfect, if an IOP runs past the end of the 

slot, complete it anyway 

• Clients request QoS via reservations 
– Similar to network RSVP protocols 
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SOS Prototype Data Organization 
Model 

• Objects 
– Named data buffers 

• Object Collections 
– Lists – named collection of 

objects 
– Maps – named collections of 

lists 

• Provides naming hierarchy, 
that we believe is 
compatible with use cases 

 



16 SOS: The Scalable Object Store 

SOS Prototype Storage Organization 
Model 

• Object Lockers 
– A dynamically provisioned allocation of storage resources 
– Provides opaque private namespace 
– Returned via a reservation request 
– Lockers provide the QoS scheme 

• Prototype implementation is based on Ceph 
– Lockers provided by RADOS pools 
– Asynchronous Object Placement with CRUSH is weird 
– Leverage the lessons of POSIX AIO and Linux AIO 
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SOS Prototype 
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Ongoing work 

• Server-directed object placement 
– Ceph uses CRUSH which is client directed placement 
– Exploring organizing locker’s out of Chord Rings 

• Scalable reservation protocols 
– Currently dedicating a server interval slot to handling 

reservations 
– Simply dropping reservation requests when a reservation for 

a new locker cannot be satisfied 
– Reservations acquired in order for existing lockers (to avoid 

dining philosophers problem) 
– Fault tolerant runtimes are still rare 
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Future Use Cases 

• Scalable Fault Tolerance Backplane (for runtimes) 
– Storage systems are and should continue to be far more 

reliable than large compute resources 

• Visualization and performance traces 
– Tricky because these are user-guided, and performance is 

dominated by small, unaligned data access 

• Key-value support 
– Important to whole classes of Cloud applications 
– E.g. HTTP Session Data 
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Thanks! 

Questions? 
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Asynchronous I/O Interfaces 

• HPC networks moving steadily toward asynchrony 
simply to support scale 

• Many existing asynchronous I/O API’s problematic 
• The only exception I am aware of is Linux AIO 

– Has proven very useful in scenarios such as FS scan 
– Effective because it improves disk access performance! 

• SOS attempts to build on lessons of Linux AIO 
– HPC networks likely natively async 
– Improve disk performance via server-directed I/O 
– Improve client predictability QoS 
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