
Asynchronous Object
Storage with QoS for
Scientific and
Commercial Data

PDSW
Nov. 18, 2013

Michael J. Brim
David A. Dillow
Sarp Oral
Bradley W. Settlemyer*
Fieyi Wang

2 SOS: The Scalable Object Store

Introduction

• What is Big Data
– Volume, variety, and velocity
– Good support for statistical inference/induction

• As opposed to traditional descriptive statistics
– Exposes some weaknesses in existing HPC storage systems

“Scientific discovery in energy research and a
wide range of other fields increasingly depends on
effectively managing and searching large datasets
for new insights.”
 - Dr. Steven Chu, Secretary of Energy
 Big Data Research Initiative, March 29, 2012

3 SOS: The Scalable Object Store

Big Data HPC Use Cases

1. Scientific Application Checkpointing
– Codes often time-step based simulation
– Bursty I/O (write for 5 minutes, once an hour)
– Almost entirely storage system write limited
– Large fraction of the memory space of the entire application

streaming to storage

2. Big Data Analysis
– Data mining, parallel data analysis, statistical induction
– Ideally, Map-Reduce
– Large block storage system reads
– Almost continuous storage system load

4 SOS: The Scalable Object Store

Interference Scenario

Compute Nodes

Storage Nodes

5 SOS: The Scalable Object Store

Interference Scenario

Storage Nodes

Science Simulation

6 SOS: The Scalable Object Store

Interference Scenario

Storage Nodes

Science Simulation

Inferential
Analysis

7 SOS: The Scalable Object Store

Interference Scenario

Science Simulation

Inferential
Analysis

Read(fd1, buf, len);

Read(fd2, buf, len);

8 SOS: The Scalable Object Store

Interference Scenario

Science Simulation

Inferential
Analysis

Write(fd, buf, len);
Read(fd1, buf, len);

Read(fd2, buf, len);

9 SOS: The Scalable Object Store

Interference Scenario

Science Simulation

Inferential
Analysis

Write(fd3, buf, len);
Read(fd1, buf, len);

Read(fd2, buf, len);

10 SOS: The Scalable Object Store

Interference Scenario

Simulation

Inferential
Analysis

Write(fd, buf, len);
Read(fd1, buf, len);

Read(fd2, buf, len);

11 SOS: The Scalable Object Store

I/O Interference Reality

• Why can’t scientific applications just overlap
computation with I/O?
– A time-step based simulation doesn’t checkpoint after every

time-step, just after some time-steps
– Next program state depends on previous program state
– Significant memory pressure
– Coordination across multiple compute nodes makes these

problems worse rather than better

• Doesn’t CFQ scheduling make this a non-issue?
– The storage servers use the same PID

• Alternative solutions like ADIOS circumvent FS services

12 SOS: The Scalable Object Store

Read/Write I/O interference

• Low-end storage array
• Simultaneous access falls

off immediately

• High-end solid state
storage (FusionIO Octal)

• Performance loss due to
large queue depths

13 SOS: The Scalable Object Store

A Scalable Object Store

• HPC Storage + Analytics
• SOS Goals:

1. 100% Asynchronous
access

2. Provide storage quality
of service (QoS)

3. Object resilience with
multi-tiered storage

4. In transit object data
transformation

Volume

Velocity

Variety

Big Data

14 SOS: The Scalable Object Store

Quality of Service

• Two factors make QoS tractable:
– SOS I/O is fundamentally async and server-directed
– Object semantic takes away consistency between two clients

writing to same store

• Lot’s of existing work on how to do this for a single
server with multiple clients
– No magic, we just take a slotted approach to multiple access

(like ALOHA)
– Don’t try to make it perfect, if an IOP runs past the end of the

slot, complete it anyway

• Clients request QoS via reservations
– Similar to network RSVP protocols

15 SOS: The Scalable Object Store

SOS Prototype Data Organization
Model

• Objects
– Named data buffers

• Object Collections
– Lists – named collection of

objects
– Maps – named collections of

lists

• Provides naming hierarchy,
that we believe is
compatible with use cases

16 SOS: The Scalable Object Store

SOS Prototype Storage Organization
Model

• Object Lockers
– A dynamically provisioned allocation of storage resources
– Provides opaque private namespace
– Returned via a reservation request
– Lockers provide the QoS scheme

• Prototype implementation is based on Ceph
– Lockers provided by RADOS pools
– Asynchronous Object Placement with CRUSH is weird
– Leverage the lessons of POSIX AIO and Linux AIO

17 SOS: The Scalable Object Store

SOS Prototype

18 SOS: The Scalable Object Store

Ongoing work

• Server-directed object placement
– Ceph uses CRUSH which is client directed placement
– Exploring organizing locker’s out of Chord Rings

• Scalable reservation protocols
– Currently dedicating a server interval slot to handling

reservations
– Simply dropping reservation requests when a reservation for

a new locker cannot be satisfied
– Reservations acquired in order for existing lockers (to avoid

dining philosophers problem)
– Fault tolerant runtimes are still rare

19 SOS: The Scalable Object Store

Future Use Cases

• Scalable Fault Tolerance Backplane (for runtimes)
– Storage systems are and should continue to be far more

reliable than large compute resources

• Visualization and performance traces
– Tricky because these are user-guided, and performance is

dominated by small, unaligned data access

• Key-value support
– Important to whole classes of Cloud applications
– E.g. HTTP Session Data

20 SOS: The Scalable Object Store

Acknowledgements

Research sponsored by the Laboratory Directed Research and

Development Program of Oak Ridge National Laboratory, managed by
UT-Battelle, LLC, for the U. S. Department of Energy.

This work also used resources at the Extreme Scale Systems Center,

located at Oak Ridge National Laboratory and supported by DoD.

21 SOS: The Scalable Object Store

Thanks!

Questions?

22 SOS: The Scalable Object Store

Asynchronous I/O Interfaces

• HPC networks moving steadily toward asynchrony
simply to support scale

• Many existing asynchronous I/O API’s problematic
• The only exception I am aware of is Linux AIO

– Has proven very useful in scenarios such as FS scan
– Effective because it improves disk access performance!

• SOS attempts to build on lessons of Linux AIO
– HPC networks likely natively async
– Improve disk performance via server-directed I/O
– Improve client predictability QoS

	Asynchronous Object Storage with QoS for Scientific and Commercial Data
	Introduction
	Big Data HPC Use Cases
	Interference Scenario
	Interference Scenario
	Interference Scenario
	Interference Scenario
	Interference Scenario
	Interference Scenario
	Interference Scenario
	I/O Interference Reality
	Read/Write I/O interference
	A Scalable Object Store
	Quality of Service
	SOS Prototype Data Organization Model
	SOS Prototype Storage Organization Model
	SOS Prototype
	Ongoing work
	Future Use Cases
	Acknowledgements
	Thanks!
	Asynchronous I/O Interfaces

