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Introduction

In distributed, data-intensive frameworks, fast access to data
is critical

One way to improve data access time is data locality
— 1.e., tasks should always execute on the node storing the data

Existing approaches
— Replication (disk locality)
— Caching (memory locality)

Our approach: Scheduled Caching
— Memory locality at just the right time

I

illinois.edu



Scheduled Caching

Enable coordination between the scheduler and the
storage layer

Scheduler is aware of...
— What data certain tasks will require
— Where the tasks will be executed
— When the tasks will be executed

Provides hints to the storage layer
— Fetch file
— Do not evict file
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Proof-of-Concept

Implemented using a simplified version of the
architecture for Hadoop

Dual-HDEFS System

— one layer on disk
— another layer in memory (uses tmpfs)

Simplified problem: Fetch files from disk HDFS to
memory HDFS when scheduler gives the pre-fetch hint




Evaluation

« SWIM benchmark

— Facebook-like Hadoop workload

— 46 jobs with varying levels of map-heavy, shuffle-heavy and
reduce-heavy jobs

« Compared 3 configurations
— Unmodified, on-disk HDFS

— Unmodified, in-memory HDFS (represents ideal case)
— Dual-HDFS with Scheduled Caching
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Results

Average Job

Completion Time 2574.96 seconds 1105.37 seconds 1130.69 seconds

« With pre-fetching, we saw an average performance
improvement of about 2.3x over disk.

« Incurs a penalty of only 2.3% over ideal configuration
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Future Work

Need a model for the workloads we are targeting
— I/O-intensive vs. computationally intensive

Intelligent Cache-eviction
— Aging algorithms

Streaming input
— Enable tasks to begin processing before entire input is available
— Also addresses files too large for available memory

Intelligent Scheduling

— Schedule tasks whose data are already in memory
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THANK YOU!
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