
 Towards enabling
cooperation between scheduler and

storage layer to improve job
performance

Mayank Pundir, John C. Bellessa, Shadi A. Noghabi, Cristina L. Abad, Roy H. Campbell

Introduction

• In distributed, data-intensive frameworks, fast access to data
is critical

• One way to improve data access time is data locality
– i.e., tasks should always execute on the node storing the data

• Existing approaches
– Replication (disk locality)

– Caching (memory locality)

• Our approach: Scheduled Caching
– Memory locality at just the right time

Scheduled Caching

• Enable coordination between the scheduler and the
storage layer

• Scheduler is aware of…

– What data certain tasks will require

– Where the tasks will be executed

– When the tasks will be executed

• Provides hints to the storage layer
– Fetch file

– Do not evict file

Proof-of-Concept

• Implemented using a simplified version of the
architecture for Hadoop

• Dual-HDFS System

– one layer on disk

– another layer in memory (uses tmpfs)

• Simplified problem: Fetch files from disk HDFS to
memory HDFS when scheduler gives the pre-fetch hint

Evaluation

• SWIM benchmark

– Facebook-like Hadoop workload

– 46 jobs with varying levels of map-heavy, shuffle-heavy and
reduce-heavy jobs

• Compared 3 configurations

– Unmodified, on-disk HDFS

– Unmodified, in-memory HDFS (represents ideal case)

– Dual-HDFS with Scheduled Caching

Results

• With pre-fetching, we saw an average performance
improvement of about 2.3x over disk.

• Incurs a penalty of only 2.3% over ideal configuration

Unmodified,
on-disk

Unmodified,
in-memory

Dual-HDFS w/
pre-fetching

Average Job
Completion Time

2574.96 seconds 1105.37 seconds 1130.69 seconds

Future Work

• Need a model for the workloads we are targeting
– I/O-intensive vs. computationally intensive

• Intelligent Cache-eviction
– Aging algorithms

• Streaming input
– Enable tasks to begin processing before entire input is available

– Also addresses files too large for available memory

• Intelligent Scheduling
– Schedule tasks whose data are already in memory

THANK YOU!

