UNIVERSITY OF ILLINOIS

AT URBANA-CHAMPAIGN

Towards enabling
cooperation between scheduler and
storage layer to improve job

performance
Mayank Pundir, John C. Bellessa, Shadi A. Noghabi, Cristina L. Abad, Roy H. Campbell




Introduction

In distributed, data-intensive frameworks, fast access to data
is critical

One way to improve data access time is data locality
— 1.e., tasks should always execute on the node storing the data

Existing approaches
— Replication (disk locality)
— Caching (memory locality)

Our approach: Scheduled Caching
— Memory locality at just the right time

I

illinois.edu



Scheduled Caching

Enable coordination between the scheduler and the
storage layer

Scheduler is aware of...
— What data certain tasks will require
— Where the tasks will be executed
— When the tasks will be executed

Provides hints to the storage layer
— Fetch file
— Do not evict file

illinois.edu



Scheduler

|

1. Fetch File C on
Storage Node B 3. Execute task

Metadata
Server (MDS)

2. Fetch Flie
C to Memory

Storage Node Storage Node Storage Node

3. Fetch 4. Execute task with
in-memory file

-

I

illinois.edu



Proof-of-Concept

Implemented using a simplified version of the
architecture for Hadoop

Dual-HDEFS System

— one layer on disk
— another layer in memory (uses tmpfs)

Simplified problem: Fetch files from disk HDFS to
memory HDFS when scheduler gives the pre-fetch hint




Evaluation

« SWIM benchmark

— Facebook-like Hadoop workload

— 46 jobs with varying levels of map-heavy, shuffle-heavy and
reduce-heavy jobs

« Compared 3 configurations
— Unmodified, on-disk HDFS

— Unmodified, in-memory HDFS (represents ideal case)
— Dual-HDFS with Scheduled Caching

I

illinois.edu



Results

Average Job

Completion Time 2574.96 seconds 1105.37 seconds 1130.69 seconds

« With pre-fetching, we saw an average performance
improvement of about 2.3x over disk.

« Incurs a penalty of only 2.3% over ideal configuration

I

illinois.edu



Future Work

Need a model for the workloads we are targeting
— I/O-intensive vs. computationally intensive

Intelligent Cache-eviction
— Aging algorithms

Streaming input
— Enable tasks to begin processing before entire input is available
— Also addresses files too large for available memory

Intelligent Scheduling

— Schedule tasks whose data are already in memory

I

illinois.edu



THANK YOU!

illinois.edu



