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•  Parallel Log Structured File System 
–  Interposed filesystem b/w apps & backing storage 
–  Los Alamos National Labs, CMU, EMC, … 
– Target: HPC checkpoint files 

•  PLFS transparently transforms a highly 
concurrent write access pattern to a pattern 
more efficient for distributed filesystems 
– First paper: Bent et al, Supercomputer 2009 
–  http://github.com/plfs, http://institute.lanl.gov/plfs/ 

What is PLFS? 
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•  The two main checkpoint write patterns: 
– N-1: all N processes write to one shared file 

•  Concurrent I/O to a single file is often unscalable 
•  Small, unaligned, clustered traffic is problematic 

– N-N: each process writes to its own file 
•  Overhead of inserting many files in a single dir 
•  Easier for DFS (after files created) 
•  Archival and management more difficult 

•  Initial PLFS focus: improve N-1 case 
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Checkpoint Write Patterns 
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•  PLFS improves N-1 performance by 
transforming it into an N-N workload 

•  FUSE/MPI: transparent solution,  
no application changes required 
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PLFS Transforms Workloads 
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PLFS Converts N-1 to N-N 
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PLFS N-1 Bandwidth Speedups 
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•  Original PLFS was limited to 1 workload: 
– N-1 checkpoint on mounted posix filesystem 
– All data stored in PLFS container logs 

•  Ported first to MIO-IO/ROMIO 
– Feasibly deploy on leadership class machines 

•  Success with LANL apps: actual adoption? 
– Requires maintainability & roadmap evolution 
– Develop a team: LANL, EMC, CMU, … 

•  Revisit code with maintainability in mind 
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The Price of Success 
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PLFS Extensibility Architecture 

PLFS high-level API 
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•  Emergence of Hadoop: converged storage 
•  HDFS: Hadoop Distributed Filesystem 

– Key attributes: 
•  Single sequential writer (not POSIX, no pwrite) 
•  Not VFS mounted, access through Java API 
•  Local storage on nodes (converged) 
•  Data replicated ~3 times (local+remote1+remote2) 

•  HPC in the Cloud: N-1 checkpoint on HDFS? 
– Observation: PLFS log I/O fits HDFS semantics 

Case Study: HPC in the Cloud 
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•  PLFS hardwired to POSIX API: 
– Needs a kernel mounted filesystem 
– Uses integer file descriptors 
– Memory maps index files to read them 

•  HDFS does not fit these assumptions 
 
•  Solution: I/O Store 

–  Insert a layer of indirection above PLFS backend 
– Model after POSIX API to minimize code changes 

PLFS Backend Limitations 
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PLFS I/O Store Architecture 
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•  Testbed: PRObE (www.nmc-probe.org) 
•  Each node has dual 1.6GHz AMD cores,  

16GB RAM, 1TB drive, gigabit ethernet 
•  Ubuntu Linux, HDFS 0.21.0, PLFS, OpenMPI 

•  Benchmark: LANL FS Test Suite (fs_test) 
•  Simulates N-1 checkpoint, strided 
•  Filesystems tested:  

–  PVFS OrangeFS 2.8.4 w/64MB stripe size 
–  PLFS/HDFS w/1 replica  (local disk) 
–  PLFS/HDFS w/3 replicas (local disk + remote1 + remote 2) 

•  Blocksizes: 47001, 48K, 1M 
•  Checkpoint size: 32GB written by 64 nodes 

PLFS/HDFS Benchmark 
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Benchmark Operation 
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•  FUSE filesystem and a Middleware lib (MPI) 

PLFS Implementation Architecture 
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PLFS/HDFS Write Bandwidth 
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PLFS/HDFS Write Bandwidth 
•  PLFS/HDFS performs well (note HDFS1 is local disk) 



 !

47001 48K 1M
access unit size (bytes)

0

500

1000

1500

2000

w
rit

e 
ba

nd
w

id
th

 (M
by

te
s/

s)

PVFS-write
PLFS/HDFS1-write
PLFS/HDFS3-write

17 

PLFS/HDFS Write Bandwidth 
•  PLFS/HDFS performs well (note HDFS3 is 3 copies) 
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PLFS/HDFS Read Bandwidth 
•  HDFS with small access size benefits from PLFS log grouping 
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PLFS/HDFS Read Bandwidth 
•  HDFS3 with large access size suffers imbalance 
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HDFS 1 vs 3: I/O Scheduling 
•  Network counters show HDFS3 read imbalance 
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•  Rewrote initial I/O Store prototype 
– Production-level code 
– Multiple concurrent instances of I/O Stores 

•  Re-plumbed entire backend I/O path 
•  Prototyped POSIX, HDFS, PVFS stores 

–  IOFSL done by EMC 

•  Regression tested at LANL 
•  I/O Store now part of PLFS released code 

– https://github.com/PLFS 

21 

I/O Store Status 
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•  PLFS extensions for workload transformation: 
–  Logical FS interface 

•  Not just container logs; packing small files, burst buffer 
–  I/O Store layer 

•  Non-POSIX backends (HDFS, IOFSL, PVFS) 
•  Compression, write buffering, IO forwarding 

– Container index extensions 
•  PLFS is open source, available on github 

–  http://github.com/plfs 
– Developer email: plfs-devel@lists.sourceforge.net  
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Conclusions 


