
 !

Structuring PLFS for
Extensibility

Chuck Cranor, Milo Polte, Garth Gibson

PARALLEL DATA LABORATORY
Carnegie Mellon University

 !

•  Parallel Log Structured File System
–  Interposed filesystem b/w apps & backing storage
–  Los Alamos National Labs, CMU, EMC, …
– Target: HPC checkpoint files

•  PLFS transparently transforms a highly
concurrent write access pattern to a pattern
more efficient for distributed filesystems
– First paper: Bent et al, Supercomputer 2009
–  http://github.com/plfs, http://institute.lanl.gov/plfs/

What is PLFS?

2

 !

•  The two main checkpoint write patterns:
– N-1: all N processes write to one shared file

•  Concurrent I/O to a single file is often unscalable
•  Small, unaligned, clustered traffic is problematic

– N-N: each process writes to its own file
•  Overhead of inserting many files in a single dir
•  Easier for DFS (after files created)
•  Archival and management more difficult

•  Initial PLFS focus: improve N-1 case

3

Checkpoint Write Patterns

 !

•  PLFS improves N-1 performance by
transforming it into an N-N workload

•  FUSE/MPI: transparent solution,
no application changes required

4

PLFS Transforms Workloads

 !

PLFS Converts N-1 to N-N

PLFS Virtual Layer

/foo

host1 host2 host3

/foo/

hostdir.1/ hostdir.2/ hostdir.3/

131 132 279 281 152 148

data.131
indx.131

data.132
indx.132

data.279
indx.279

data.281
indx.281

data.152
indx.152

data.148
indx.148

Physical Underlying Parallel File System 5

 !

PLFS N-1 Bandwidth Speedups

100X

10X

SPEED UP

6

 !

•  Original PLFS was limited to 1 workload:
– N-1 checkpoint on mounted posix filesystem
– All data stored in PLFS container logs

•  Ported first to MIO-IO/ROMIO
– Feasibly deploy on leadership class machines

•  Success with LANL apps: actual adoption?
– Requires maintainability & roadmap evolution
– Develop a team: LANL, EMC, CMU, …

•  Revisit code with maintainability in mind

7

The Price of Success

 !8

PLFS Extensibility Architecture

PLFS high-level API

MDHIM
w/LevelDB

HPC Application

Logical FS interface

container small file flat file

Index API

distributed pattern byte-range

I/O Store interface

posix pvfs iofsl hdfs

libhdfs/jvm hdfs.jar

libplfs

 !

•  Emergence of Hadoop: converged storage
•  HDFS: Hadoop Distributed Filesystem

– Key attributes:
•  Single sequential writer (not POSIX, no pwrite)
•  Not VFS mounted, access through Java API
•  Local storage on nodes (converged)
•  Data replicated ~3 times (local+remote1+remote2)

•  HPC in the Cloud: N-1 checkpoint on HDFS?
– Observation: PLFS log I/O fits HDFS semantics

Case Study: HPC in the Cloud

9

 !

•  PLFS hardwired to POSIX API:
– Needs a kernel mounted filesystem
– Uses integer file descriptors
– Memory maps index files to read them

•  HDFS does not fit these assumptions

•  Solution: I/O Store

–  Insert a layer of indirection above PLFS backend
– Model after POSIX API to minimize code changes

PLFS Backend Limitations

10

 !

PLFS I/O Store Architecture

lib{hdfs,jvm}

hdfs.jar

PLFS FUSE PLFS MPI I/O

posix libc
API

PLFS container

I/O store

posix
i/o

HDFS
i/o

libplfs

mounted fs
Java code

11

 !

•  Testbed: PRObE (www.nmc-probe.org)
•  Each node has dual 1.6GHz AMD cores,

16GB RAM, 1TB drive, gigabit ethernet
•  Ubuntu Linux, HDFS 0.21.0, PLFS, OpenMPI

•  Benchmark: LANL FS Test Suite (fs_test)
•  Simulates N-1 checkpoint, strided
•  Filesystems tested:

–  PVFS OrangeFS 2.8.4 w/64MB stripe size
–  PLFS/HDFS w/1 replica (local disk)
–  PLFS/HDFS w/3 replicas (local disk + remote1 + remote 2)

•  Blocksizes: 47001, 48K, 1M
•  Checkpoint size: 32GB written by 64 nodes

PLFS/HDFS Benchmark

12

 !13

Benchmark Operation

3

stride

block
remaining strides
continue pattern for

write phase

read phase

nodes

nodes (shifted for read)

2 3 0 1

0 1 2

We unmount and cache flush data filesystem between read/write

 !

•  FUSE filesystem and a Middleware lib (MPI)

PLFS Implementation Architecture

PLFS
FUSE

daemon

PLFS
FUSE
app

proc1

PLFS
FUSE
app

proc2

PLFS
MPI app

proc1

PLFS
MPI app

proc2

FUSE
module

VFS/POSIX API

interconnect Local fs Distributed
fs

PLFS lib PLFS/
MPI libs

PLFS/
MPI libs

use
r

kernel

app i/o

FUSE
upcall

backing
store i/o

MPI sync
calls

to disk to network to other
nodes 14

 !

47001 48K 1M
access unit size (bytes)

0

500

1000

1500

2000

w
rit

e
ba

nd
w

id
th

 (M
by

te
s/

s)

PVFS-write
PLFS/HDFS1-write
PLFS/HDFS3-write

15

PLFS/HDFS Write Bandwidth

 !

47001 48K 1M
access unit size (bytes)

0

500

1000

1500

2000

w
rit

e
ba

nd
w

id
th

 (M
by

te
s/

s)

PVFS-write
PLFS/HDFS1-write
PLFS/HDFS3-write

16

PLFS/HDFS Write Bandwidth
•  PLFS/HDFS performs well (note HDFS1 is local disk)

 !

47001 48K 1M
access unit size (bytes)

0

500

1000

1500

2000

w
rit

e
ba

nd
w

id
th

 (M
by

te
s/

s)

PVFS-write
PLFS/HDFS1-write
PLFS/HDFS3-write

17

PLFS/HDFS Write Bandwidth
•  PLFS/HDFS performs well (note HDFS3 is 3 copies)

 !

47001 48K 1M
access unit size (bytes)

0

500

1000

re
ad

 b
an

dw
id

th
 (M

by
te

s/
s)

PVFS-read
PLFS/HDFS1-read
PLFS/HDFS3-read

18

PLFS/HDFS Read Bandwidth
•  HDFS with small access size benefits from PLFS log grouping

 !

47001 48K 1M
access unit size (bytes)

0

500

1000

re
ad

 b
an

dw
id

th
 (M

by
te

s/
s)

PVFS-read
PLFS/HDFS1-read
PLFS/HDFS3-read

19

PLFS/HDFS Read Bandwidth
•  HDFS3 with large access size suffers imbalance

 !

10 20 30 40 50 60
Node number

0

500

1000

To
ta

l s
iz

e
of

 d
at

a
se

rv
ed

 (M
B

)

PLFS/HDFS1
PLFS/HDFS3

20

HDFS 1 vs 3: I/O Scheduling
•  Network counters show HDFS3 read imbalance

 !

•  Rewrote initial I/O Store prototype
– Production-level code
– Multiple concurrent instances of I/O Stores

•  Re-plumbed entire backend I/O path
•  Prototyped POSIX, HDFS, PVFS stores

–  IOFSL done by EMC

•  Regression tested at LANL
•  I/O Store now part of PLFS released code

– https://github.com/PLFS

21

I/O Store Status

 !

•  PLFS extensions for workload transformation:
–  Logical FS interface

•  Not just container logs; packing small files, burst buffer
–  I/O Store layer

•  Non-POSIX backends (HDFS, IOFSL, PVFS)
•  Compression, write buffering, IO forwarding

– Container index extensions
•  PLFS is open source, available on github

–  http://github.com/plfs
– Developer email: plfs-devel@lists.sourceforge.net

22

Conclusions

