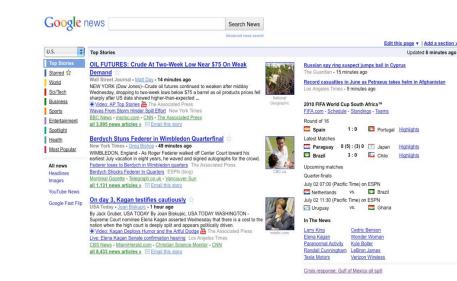


SDS: A Framework for Scientific Data Services

Bin Dong, Suren Byna*, John Wu

Scientific Data Management Group Lawrence Berkeley National Laboratory

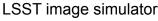
- Finding news articles of your interest in the old era of print newspaper
 - Turn pages
 - Read headlines
 - Searching for specific news was time consuming
- Online newspapers
 - Search box
 - Limited to one newspaper
- Customized News
 - Articles are organized based on reader's interest
 - Search numerous online newspapers

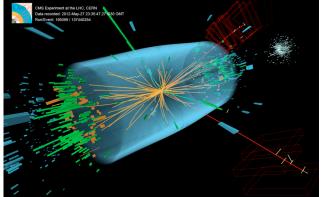

- Finding news articles of your interest in the old era of print newspaper
 - Turn pages
 - Read headlines
 - Searching for specific news was time consuming
- Online newspapers
 - Search box
 - Limited to one newspaper
- Customized News
 - Articles are organized based on reader's interest
 - Search numerous online newspapers

- Finding news articles of your interest in the old era of print newspaper
 - Turn pages
 - Read headlines
 - Searching for specific news was time consuming
- Online newspapers
 - Search box
 - Limited to one newspaper
- Customized News
 - Articles are organized based on reader's interest
 - Search numerous online newspapers

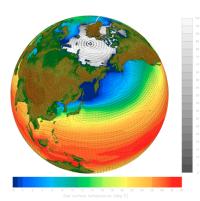
- Finding news articles of your interest in the old era of print newspaper
 - Turn pages
 - Read headlines
 - Searching for specific news was time consuming
- Online newspapers
 - Search box
 - Limited to one newspaper
- Customized News
 - Articles are organized based on reader's interest
 - Search numerous online newspapers

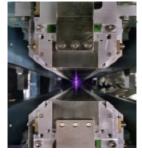
→Better organization, faster access to news





Scientific Discovery needs Fast Data Analysis

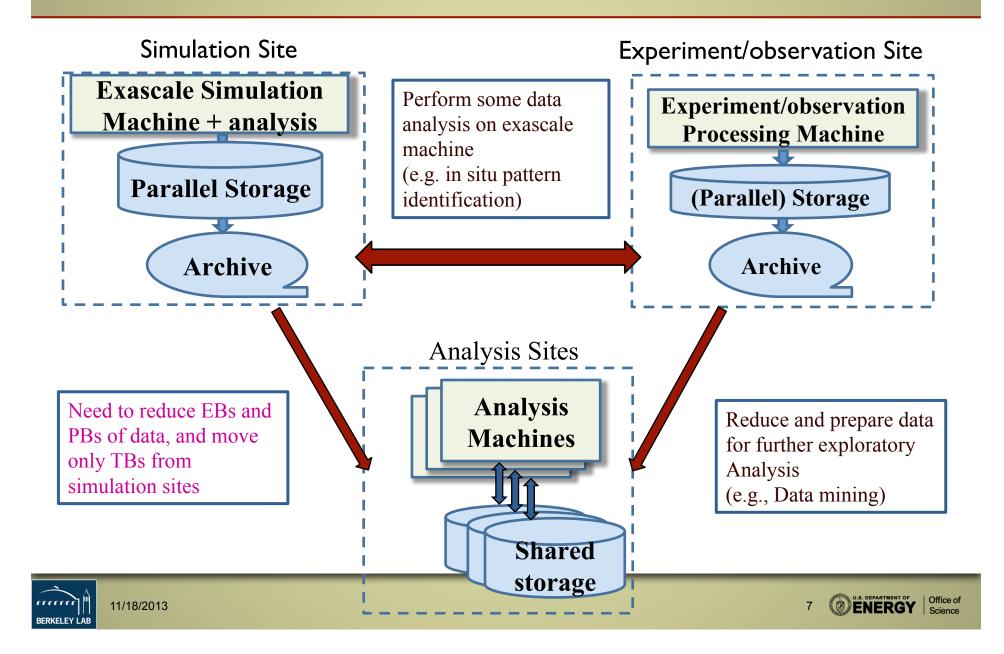

- Modern scientific discoveries are driven by massive data
 - Scientific simulations and experiments in many domains produce data in the range of terabytes and petabytes
- Fast data analysis is an important requirement for discovery
 - Data is typically stored as files on disks that are managed by file systems
 - High data read performance
 from storage is critical



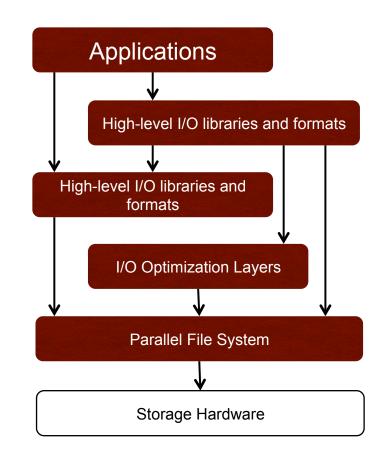
LHC: Higgs Boson search

NCAR's CESM data

Light source experiments at LCLS, ALS, SNS, etc.


Image Credits http://www.science.tamu.edu/articles/911 http://www.lsst.org/lsst/gallery/data http://nsidc.org/icelights/category/research-2/

Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy


A Generic Data Analysis Use Case

Current Practice: Immutable Data in File Systems

Data stored on file systems is immutable

- After data producers (simulations and experiments) store data, the file format/ organization is unchanged over time
- Data stored in files, which is treated by the system as a sequence of bytes
- User code (and libraries) has to impose meaning of the file layout and conduct analyses
- Burden of optimizing read performance falls on application developer
- However, optimizations are complex due to several layers of parallel I/O stack

Changing layout of data on file systems is helpful

 Separation of logical and physical data organization through reorganization

Example

- Access all variables where 1.15
 < Energy < 1.4
- Full scan of data or random accesses to non-contiguous data locations results in poor performance
- Sorting the data and accessing contiguous chunks of data leads to good performance
- Several studies showing reorganization can help
 - Listed some in the related work section

Energy	X	Y	Z	
1.1692	165.834	-28.0448	-2.76863	
2.5364	166.249	-27.9321	-2.87165	
1.4364	166.538	-27.9735	-3.16969	
1.0862	166.663	-27.9769	-2.79716	
1.2862	166.621	-27.9046	-2.78382	
1.5862	167.001	-27.9366	-3.09605	
1.3173	167.222	-27.9551	-3.22406	

11/18/2013

Changing layout of data on file systems is helpful

- Separation of logical and physical data organization through reorganization
- Example
 - Access all variables where 1.15
 < Energy < 1.4
 - Full scan of data or random accesses to non-contiguous data locations results in poor performance
 - Sorting the data and accessing contiguous chunks of data leads to good performance
- Several studies showing reorganization can help
 - Listed some in the related work section

	Energy	X	Y	Z	•••
	1.1692	165.834	-28.0448	-2.76863	
	2.5364	166.249	-27.9321	-2.87165	
	1.4364	166.538	-27.9735	-3.16969	
a	1.0862	166.663	-27.9769	-2.79716	
-	1.2862	166.621	-27.9046	-2.78382	
S	1.5862	167.001	-27.9366	-3.09605	
	1.3173	167.222	-27.9551	-3.22406	

11/18/2013

Changing layout of data on file systems is helpful

- Separation of logical and physical data organization through reorganization
- Example
 - Access all variables where 1.15
 < Energy < 1.4
 - Full scan of data or random accesses to non-contiguous data locations results in poor performance
 - Sorting the data and accessing contiguous chunks of data leads to good performance
- Several studies showing reorganization can help
 - Listed some in the related work section

-	Energy	Х	Y	Z	
	1.0862	166.663	-27.9769	-2.79716	
	1.1692	165.834	-28.0448	-2.76863	
	1.2862	166.621	-27.9046	-2.78382	
	1.3173	167.222	-27.9551	-3.22406	
	1.5862	167.001	-27.9366	-3.09605	
	1.4364	166.538	-27.9735	-3.16969	
	2.5364	166.249	-27.9321	-2.87165	

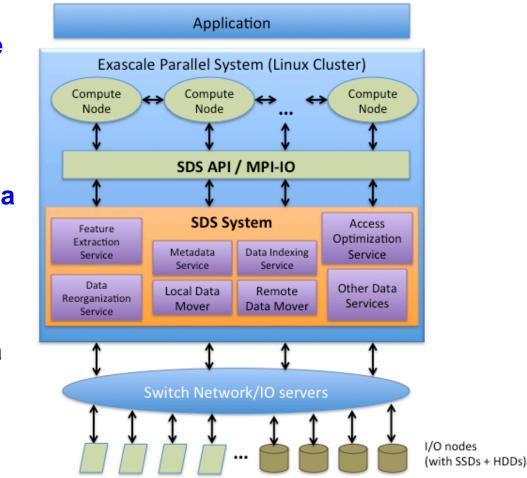
11/18/2013

Database Systems for Scientific Data Management

- Database management systems perform various optimizations without user involvement
- Many efforts from database community reach out to manage scientific data
 - Objectivity/DB, Array QL, SciQL, SciDB, etc.
- SciDB
 - A database system for scientific applications
 - Key features:
 - Array-oriented data model
 - Append-only storage
 - First-class support for user-defined functions
 - Massively parallel computations

More DB Optimizations, but ...

- Database systems use various optimization tricks and perform them automatically
 - Cache frequently accessed data
 - Use indexes
 - Store materialized views
 - ...
- However, preparing and loading of scientific data to fit into database schemas is cumbersome
- Scientific data management requirements are different from DBMS
 - Established data formats (HDF5, NetCDF, ROOT, FITS, ADIOS-BP, etc.)
 - Arrays are first class citizens
 - Highly concurrent applications


Our Solution: Scientific Data Services (SDS)

- Preserving scientific data formats and adding database optimizations as services
- A framework for bringing the merits of database technologies to scientific data
- Examples of services
 - Indexing
 - Sorting

. . .

11/18/2013

- Reorganization to improve data locality
- Compression
- Remote and selective data movement

Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy

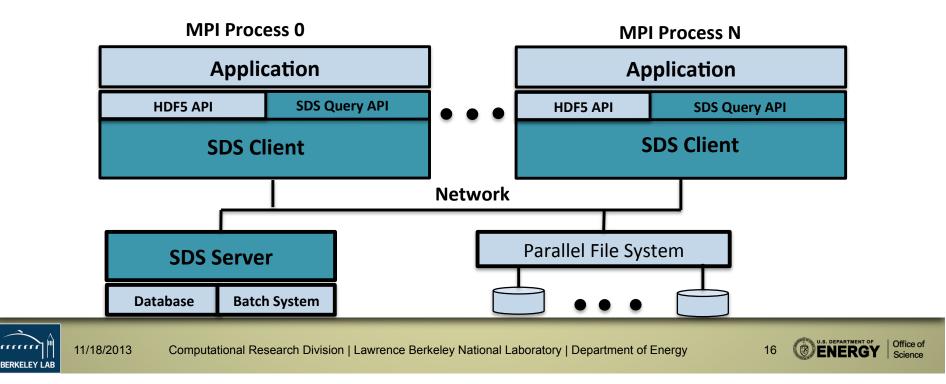
14 **(D) ENERGY** Office of Science

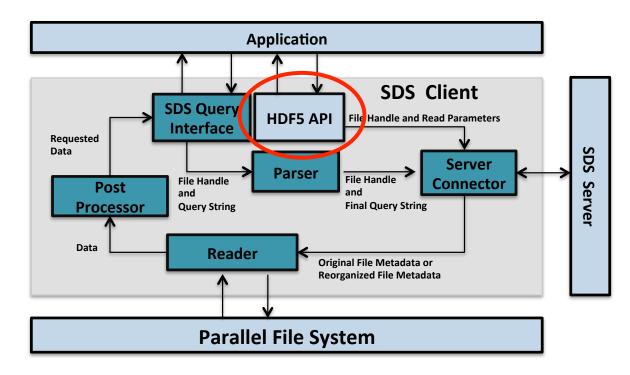
First step: Automatic Data Reorganization

Finding an optimal data organization strategy

- Capture common read patterns
- Estimate cost with various data organization strategies
- Rank data organizations for each pattern and select the best for a pattern

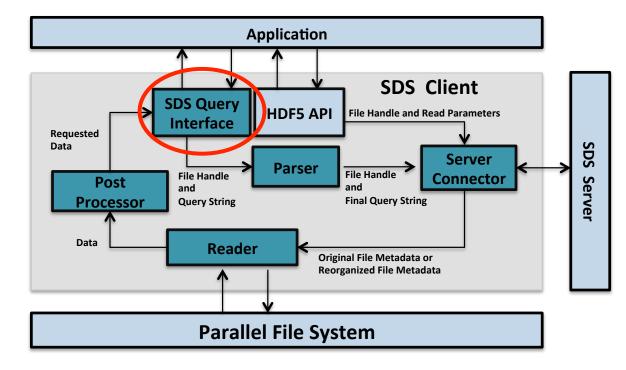
Performing data reorganization


- Similar to database management systems, perform data reorganization transparently
- Resolving permissions to the original data
- Preserve the original permissions when data is reorganized
- Using an optimally reorganized dataset transparently
 - Based on a read pattern, recognize the best available organization of data
 - Redirect to read the selected organization
 - Perform any needed post processing, such as decompression, transposition



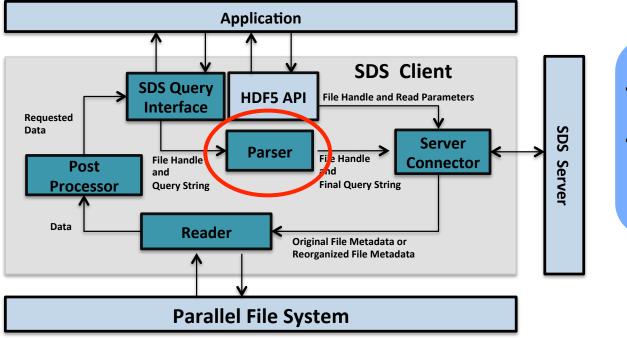
The Design of the SDS Framework

- Initial implementation of the SDS framework
 - Client-server approach
 - SDS Client library for each MPI process
 - SDS Server to find the best dataset from available reorganized datasets
 - Supporting HDF5 Read API
 - Added SDS Query API for answering range queries



HDF5 API

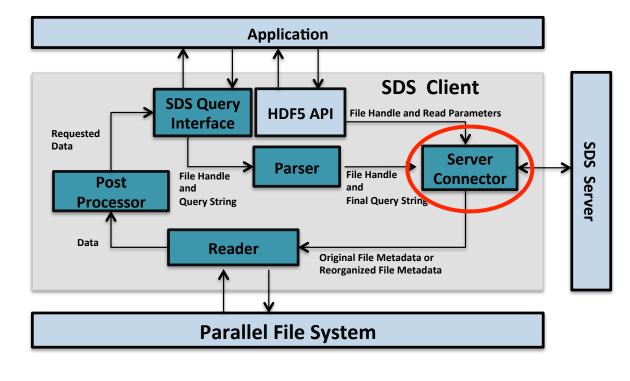
- The HDF5 Virtual Object Layer (VOL) feature allows capturing HDF5 calls
- Developed a VOL plugin for SDS for capturing file open, read, and close functions



SDS Query Interface

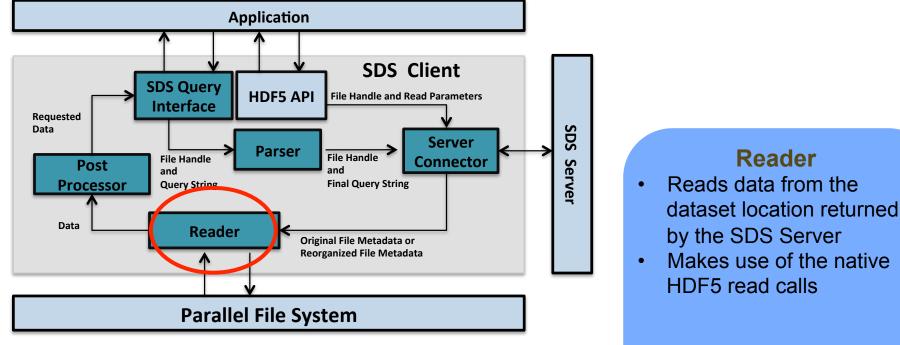
- An interface to perform SQL-style queries on arrays
- Function-based API that can be used from C/C++ applications

18 U.S. DEPARTMENT OF Office of Science



Parser

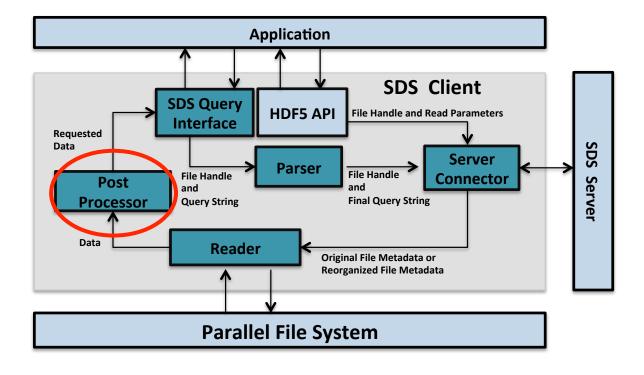
- Checks the conditions in a query
- Verifies the validity of files



Server Connector

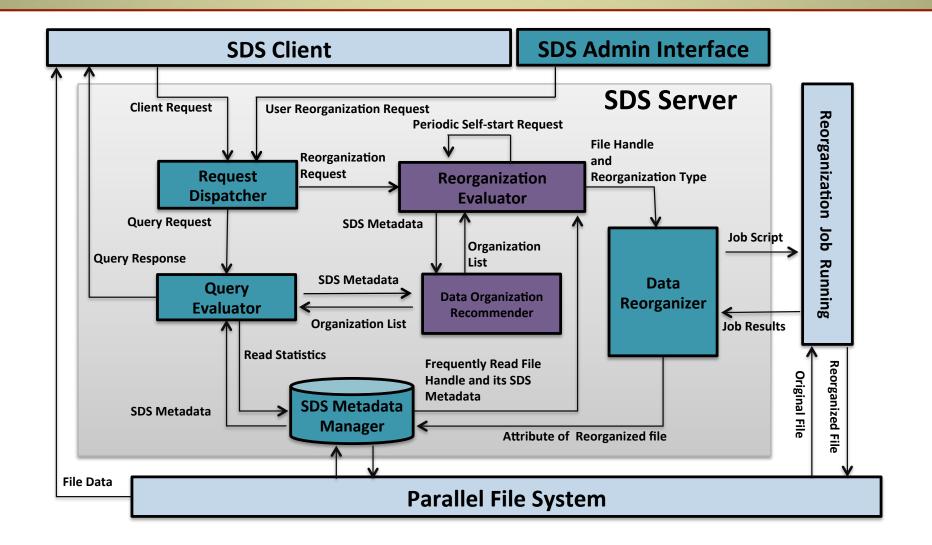
- Packages a query or HDF5 read call information and sends to the SDS server
- Using protocol buffers for communication
- MPI Rank 0 communicates with the server and then informs the remaining MPI processes

20 **ENERGY** Office of Science



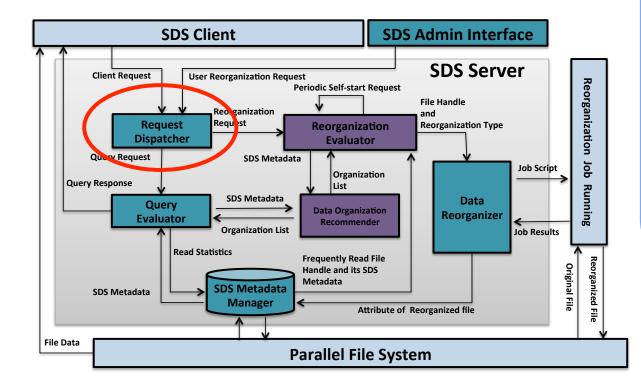
by the SDS Server

Makes use of the native

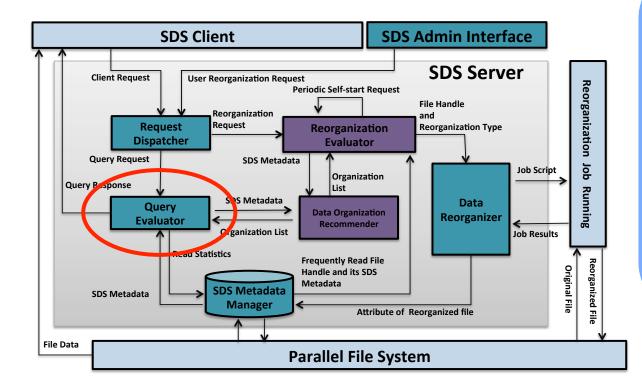


Post Processor

- Performs any postprocessing needed before returning the data to the application memory
- Eg. Decompression, transposition, etc.

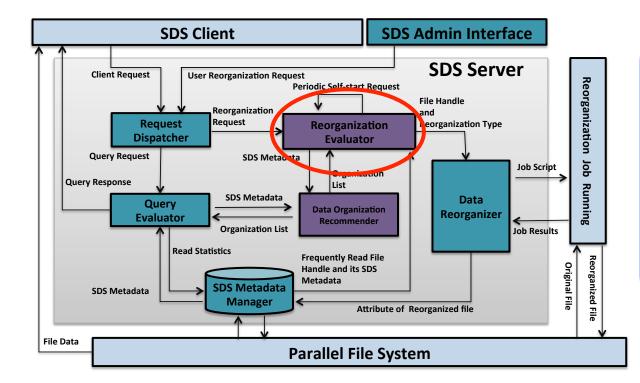

22 **(D) U.S. DEPARTMENT OF** Office of Science

....



Request Dispatcher

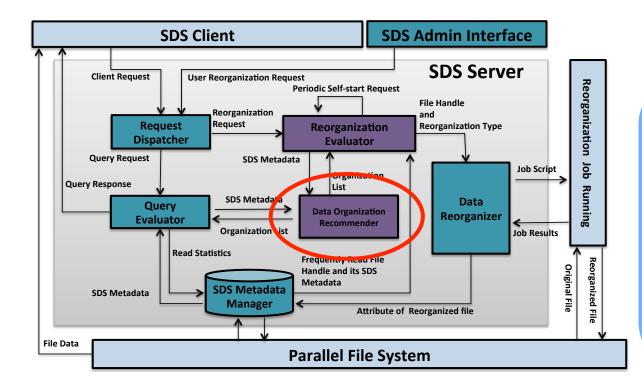
- Receives SDS client requests and SDS Admin interface
- SDS Admin interface issues reorganization commands
- Based on the request, dispatcher passes on the request to Query Evaluator and
 - Reorganization Evaluator



Query Evaluator

- Looks up SDS Metadata for finding available reorganized datasets and their locations for a given dataset
- SDS Metadata
 - File name, HDF5 dataset info, permissions

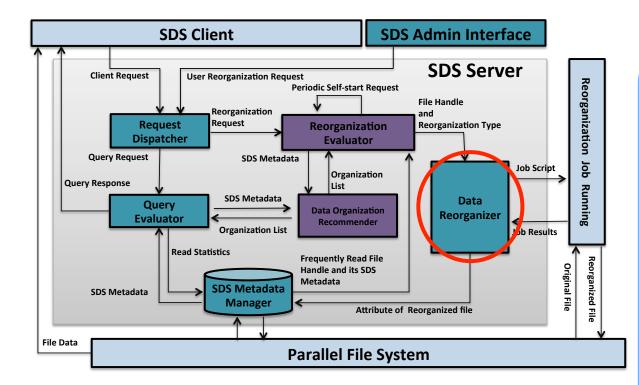
25 U.S. DEPARTMENT OF Office of Science



Reorganization Evaluator

- Decides whether to reorganize based on the frequency of read accesses
- Takes commands from the Admin interface
- Instructs Data Reorganizer to create a reorganization job script

26 **ENERGY** Office of Science



Data Organization Recommender

- Identifies optimal data reorganization
- Informs the Reorganization Evaluator with the selected strategy

27 U.S. DEPARTMENT OF Office of Science

Data Reorganizer

- Locates reorganization code, such as sorting, indexing algorithms
- Decides on the number of cores to use
- Prepares a batch job script
- Monitors the job execution
- After reorganization, stores the new data location in the SDS Metadata Manager

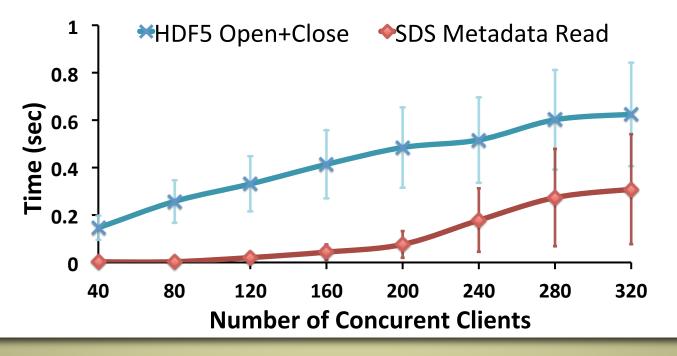
28 U.S. DEPARTMENT OF Office of Science

Performance Evaluation: Setup

NERSC Hopper supercomputer

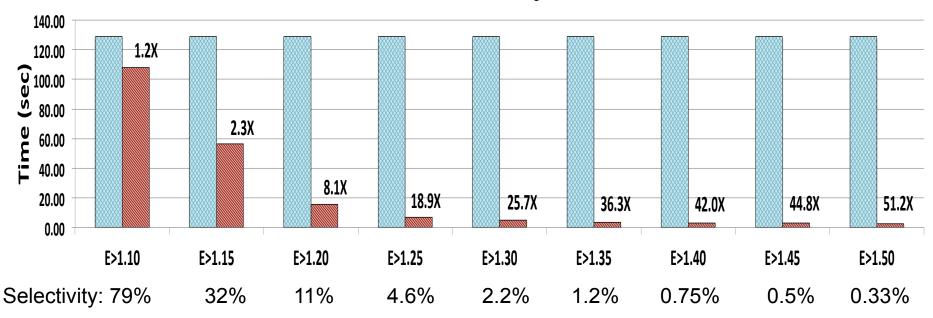
- 6,384 compute nodes
- 2 twelve-core AMD 'MagnyCours' 2.1-GHz processors per node
- 32 GB DDR3 1333-MHz memory per node
- Employs the Gemini interconnect with a 3D torus topology
- Lustre parallel file system with 156 OSTs at a peak BW of 35 GB/s

Software


- Cray's MPI library
- HDF5 Virtual Object Layer code base
- Data
 - Particle data from a plasma physics simulation (VPIC), simulating magnetic reconnection phenomenon in space weather

Performance Evaluation: Overhead of SDS

- SDS Metadata Manager uses Berkeley DB for storing metadata of reorganized data
- Measured response time of multiple concurrent SDS Clients requesting metadata from one SDS Server
- Low overhead of < 0.5 seconds with 240 concurrent clients</p>



Performance Evaluation: Benefits of SDS

- Ran various queries on particle energy conditions
- Performance benefit over full scan varies based on selectivity of data
- 20X to 50X speedup when data selectivity less than 5%

Full Data Scan Read Reorganized Data

Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy

Conclusion and Future Work

- File systems on current supercomputers are analogous to print newspapers
- The SDS framework is vehicle for applying various optimizations
 - Live customization of data organization based on data usage (in progress)
 - To work with existing scientific data formats
- Status: Platform for performing various optimizations is ready
- Low overhead and high performance benefits
- Ongoing and future work:
 - Dynamic recognition of read patterns
 - Model-driven data organization optimizations
 - In-memory query execution and query plan optimization
 - FastBit indexing to support querying
 - Support for more data formats

Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy

