Fourier-Assisted Machine Learning of Hard Disk Drive Access Time Models

Adam Crume¹ Carlos Maltzahn¹ Lee Ward² Thomas Kroeger² Matthew Curry² Ron Oldfield² Patrick Widener²

> ¹University of California, Santa Cruz {adamcrume, carlosm}@cs.ucsc.edu

²Sandia National Laboratories, Livermore, CA {lee, tmkroeg, mlcurry, raoldfi, pwidene}@sandia.gov

November 18, 2013

Use cases:

- System simulations
- File system design
- Quality of service / real-time guarantees (Anna Povzner's work with Fahrrad)

Complexity, part 1

Rotational latency = 8.33ms max at 7200 RPM

Additionally:

- Queueing
- Scheduling
- Caching
- Readahead
- Write-back

Short term goals (this presentation):

- Automated
- Fast

Long term goals (future work):

- Flexible
- Future-proof
- Device-independent

Offline vs. online machine learning

- System simulations (offline)
- File system design (offline)
- Quality of service / real-time guarantees (offline/online)

Existing machine learning approaches: demerit

Existing machine learning approaches: average in time slice

For each time slice:

$$\left. \begin{array}{ccc} r_0 & \rightarrow & prediction_0 \\ r_1 & \rightarrow & prediction_1 \\ \vdots & & \vdots \\ r_n & \rightarrow & prediction_n \end{array} \right\} \rightarrow \text{average} \rightarrow \text{compare with real average}$$

Existing machine learning approaches: predict average

For each time slice:

$$\left. \begin{array}{c} r_0 \\ r_1 \\ \vdots \\ r_n \end{array} \right\} \rightarrow \text{aggregate} \rightarrow \text{predict average} \rightarrow \text{compare with real average} \\ \end{array} \right.$$

All aggregate. None predict individual latencies with low error.

Hard part? Access times.

Characteristics:

- Random
- Read-only
- Single-sector
- Full utilization
- First serpentine

Minimizes:

- Caching
- Readahead
- Write-back
- Transfer time
- Request arrival time sensitivity
- Track length variation

Workload emphasizes access time (which is a hard problem by itself) and de-emphasizes everything else. Other workloads are future work.

Access time breakdown

• Why are access times hard to predict?

• Why are access times hard to predict?

- Rotational layout
- Serpentines
- Sector sparing
- Skew

- Why are access times hard to predict?
 - Rotational layout
 - Serpentines
 - Sector sparing
 - Skew
- What do these have in common?

• Why are access times hard to predict?

- Rotational layout
- Serpentines
- Sector sparing
- Skew
- What do these have in common?
 - Periodicity!

Most machine learning algorithms cannot directly predict periodic functions well.

Access time function

Full table is 1 billion by 1 billion entries, would take approximately 500 million years to capture data and 3.5 exabytes to store it. *Extremely* sparse sampling is required, must compute on the fly.

Key idea 1 of 2: add sines and cosines to inputs

$$\begin{pmatrix} a \\ sin(2\pi a/p_1) \\ cos(2\pi a/p_1) \\ sin(2\pi a/p_2) \\ cos(2\pi a/p_2) \\ \vdots \\ b \\ sin(2\pi b/p_1) \\ cos(2\pi b/p_1) \\ sin(2\pi b/p_2) \\ cos(2\pi b/p_2) \\ \vdots \end{pmatrix}$$

(a is the start sector, b is the end sector)

Fourier transform

Key idea 2 of 2: search on diagonal to limit computation

и

Interdependence

- Usually, f(x) = tanh(x) (or similar). Final output may use f(x) = x.
- Training: given input x_i and desired output y*, adjust w_i and b such that y = y*

(a is the start sector, b is the end sector)

Neural net with shared weights

(a is the start sector, b is the end sector)

Access times

Configuration	Error (ms)
constant value	2.013 ± 0.024
မ္မ no periods, w/o bagging	2.075 ± 0.014
$\frac{9}{2}$ no periods, with bagging	2.067 ± 0.001
$\stackrel{-}{\subseteq}$ 6 random periods, w/o bagging	2.019 ± 0.013
់ថ្មី 6 random periods, with bagging	2.015 ± 0.013
$\frac{1}{2}$ 6 periods, w/o bagging	1.649 ± 0.154
$^{\Box}$ 6 periods, with bagging	1.123 ± 0.009
no periods, w/o subnets	2.014 ± 0.034
្ន no periods, with subnets	2.012 ± 0.019
$\stackrel{\text{\tiny{@}}}{=}$ 6 random periods, w/o subnets	1.924 ± 0.176
σ 6 random periods, with subnets	1.992 ± 0.059 H
a 6 periods, w/o subnets	0.954 ± 0.052
Z 6 periods, with subnets	0.830 ± 0.031

RMS errors for predictions over the first 237,631 sectors (94 tracks) with a random read workload.

Speedup of 40X compared to DiskSim (not counting trace load time)

- Periodicity information improves multiple algorithms
- High-level assumption, likely to apply to many devices
- Machine learning of per-request latencies is possible