
Evaluation 
 

We tested our prototype using the SWIM benchmark on an 11 node 

cluster: one master node with 10 GB of memory; 10 slave nodes, each 

with 5 GB memory.  

 

We compare performance of three different configurations: 

1. Unmodified, on-disk HDFS 

2. Unmodified, in-memory HDFS (represents ideal case) 

3. HDFS with Scheduled Caching 

 

In both configuration 2 and 3, in-memory HDFS (see Implementation) 

have half of the system memory available: 5 GB in the master node, and 

2.5 GB in the slave nodes. 

More questions? 

Contact Mayank: pundir2@illinois.edu 

Mayank Pundir, John Bellessa, Shadi A. Noghabi, Cristina L. Abad, Roy H. Campbell 
Department of Computer Science, College of Engineering, University of Illinois at Urbana-Champaign 

Towards Enabling Cooperation Between Scheduler  

and Storage Layer to Improve Job Performance 

Scheduled Caching 
  

• Locality-aware schedulers know which data a task requires 

 

• To leverage this awareness, we envision collaboration between the 

scheduler and storage layer 

 

• The scheduler may pass the information to the storage layer as hints 

• Pre-fetch: Bring soon-to-be-used files into memory 

• Do not evict: Files will be needed in the future 

 

• Scheduler issues hints to a metadata server API 

 

Motivation 
 

• Fast access to data is critical in data-intensive computing applications 

 

• Fast access achieved by data locality 

 

• Existing approaches deal with “hot” data 

• Replication 

• Caching 

 

• These approaches do not improve the first access to files, as they 

have not yet become hot. 

Implementation 
 

• Our proof-of-concept implementation on Hadoop 1.2.1 required less 

than 100 additional lines of code 

 

• Based on “dual-HDFS” design 

• One instance on disk; another in memory (using tmpfs) 

• fetch() call brings files from on-disk HDFS to in-memory HDFS 

 

With our prototype, all jobs complete in  

at most 2000 sec.  

 

Less than half of the jobs have 

completed with the on-disk version at 

2000 sec. 

From this figure, we see that many of 

the tasks in the SWIM benchmark 

have significant overhead when using 

the on-disk HDFS. 

 

Our prototype improves average job 

performance by 2.3x  

This figure shows that our 

implementation performs almost as well 

as the “ideal” configuration. 

 

In fact, we only incur a 2.3% time 

penalty. 

Future Work 
 

• Our immediate plans are to enable Scheduled Caching in the Hive 

and Pig frameworks 

 

• When memory presence is achieved, but memory locality is not, 

RDMA could possibly be employed to speed up network transfer 

 

• Another optimization we have considered is enabling MapReduce 

tasks to begin operating on partial data; that is, before all the data is 

available in memory 

 

• A memory-aware scheduler could intelligently schedule tasks whose 

input data are already in memory ahead of other tasks 


