Towards Enabling Cooperation Between Scheduler

and Storage Layer to Improve Job Performance
Mayank Pundir, John Bellessa, Shadi A. Noghabi, Cristina L. Abad, Roy H. Campbell

Department of Computer Science, College of Engineering, University of lllinois at Urbana-Champaign

Motivation Evaluation
« Fast access to data is critical in data-intensive computing applications We tested our prototype using the SWIM benchmark on an 11 node
cluster: one master node with 10 GB of memory, 10 slave nodes, each
« Fast access achieved by data locality with 5 GB memory.
» EXxisting approaches deal with "hot” data We compare performance of three different configurations:
* Replication 1. Unmodified, on-disk HDFS
« Caching 2. Unmodified, in-memory HDFS (represents ideal case)
3. HDFS with Scheduled Caching

* These approaches do not improve the first access to files, as they
have not yet become hot. In both configuration 2 and 3, in-memory HDFS (see Implementation)
have half of the systemm memory available: 5 GB in the master node, and
2.5 GB In the slave nodes.

Scheduled Caching

With our prototype, all jobs complete In

 Locality-aware schedulers know which data a task requires at most 2000 sec.

* To leverage this awareness, we envision collaboration between the

Less than half of the jobs have
scheduler and storage layer

completed with the on-disk version at

. . . 2 .
* The scheduler may pass the information to the storage layer as hints 000 sec

« Pre-fetch: Bring soon-to-be-used files into memory
* Do not evict: Files will be needed in the future

From this figure, we see that many of | "=
the tasks in the SWIM benchmark ™| 1

have significant overhead when using § =/
Scheduler the on-disk HDFS. ..l
1. Fetch File C on E

Storage Node B 3. Execute task

 Scheduler issues hints to a metadata server API

Our prototype improves average job =~ | “

Metadata performance by 2.3x | ‘ H“"m
Server (MDS)

2. Fetch Flie
C to Memory

1 This figure shows that our
Storage Node | Implementation performs almost as well

as the “ideal” configuration.

nnnnnnnnnnnnnnnnnn

4. Execute task with
in-memory file

| I In fact, we only incur a 2.3% time
. | penalty.

Implementation

. . . Future Work
« Our proof-of-concept implementation on Hadoop 1.2.1 required less

than 100 additional lines of code Our immediate plans are to enable Scheduled Caching in the Hive

and Pig frameworks
« Based on “dual-HDFS” design 10 W

* One Instance on disk; another in memory (using tmpfs)

. . . . When memory presence is achieved, but memory locality Iis not,
 fetch() call brings files from on-disk HDFS to in-memory HDFS y P y y

RDMA could possibly be employed to speed up network transfer

| Another optimization we have considered is enabling MapReduce
More gquestions? tasks to begin operating on partial data; that is, before all the data is
Contact Mayank: pundir2@illinois.edu available in memory

A memory-aware scheduler could intelligently schedule tasks whose

I L L I N O I S iInput data are already in memory ahead of other tasks

