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Motivation Evaluation
« Fast access to data is critical in data-intensive computing applications We tested our prototype using the SWIM benchmark on an 11 node
cluster: one master node with 10 GB of memory, 10 slave nodes, each
« Fast access achieved by data locality with 5 GB memory.
» EXxisting approaches deal with "hot” data We compare performance of three different configurations:
* Replication 1. Unmodified, on-disk HDFS
« Caching 2. Unmodified, in-memory HDFS (represents ideal case)
3. HDFS with Scheduled Caching

* These approaches do not improve the first access to files, as they
have not yet become hot. In both configuration 2 and 3, in-memory HDFS (see Implementation)
have half of the systemm memory available: 5 GB in the master node, and
2.5 GB In the slave nodes.

Scheduled Caching

With our prototype, all jobs complete In

 Locality-aware schedulers know which data a task requires at most 2000 sec.

* To leverage this awareness, we envision collaboration between the

Less than half of the jobs have
scheduler and storage layer

completed with the on-disk version at
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* The scheduler may pass the information to the storage layer as hints 000 sec

« Pre-fetch: Bring soon-to-be-used files into memory
* Do not evict: Files will be needed in the future
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| I In fact, we only incur a 2.3% time
. | penalty.

Implementation

. . . Future Work
« Our proof-of-concept implementation on Hadoop 1.2.1 required less

than 100 additional lines of code Our immediate plans are to enable Scheduled Caching in the Hive

and Pig frameworks
« Based on “dual-HDFS” design 10 W

* One Instance on disk; another in memory (using tmpfs)

. . . . When memory presence is achieved, but memory locality Iis not,
 fetch() call brings files from on-disk HDFS to in-memory HDFS y P y y

RDMA could possibly be employed to speed up network transfer

| Another optimization we have considered is enabling MapReduce
More gquestions? tasks to begin operating on partial data; that is, before all the data is
Contact Mayank: pundir2@illinois.edu available in memory

A memory-aware scheduler could intelligently schedule tasks whose

I L L I N O I S iInput data are already in memory ahead of other tasks




