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Problem
Hard disk drive performance models are often used as part of a much
larger system simulation. The most accurate models are white-box mod-
els such as DiskSim. Modern hard disk drives are complex, meaning that
these models are also complex, and parameterizing the models is a long
and difficult process. Tools such as DIG can extract this information.
Unfortunately, they require assumptions about the internal structure of
the hard disk drive. This structure is likely to change in the future due
to the introduction of shingled hard disk drives or other optimizations,
as has happened in the past with Zoned Bit Recording, serpentine lay-
outs, etc. Manufacturers do not release this information, so researchers
must reverse-engineer a device before modifying DIG and DiskSim to
support the new layout.
A more desirable approach is to use machine learning to reproduce the
behavior with as few assumptions as possible. Some progress has been
made in behavioral modeling of hard disk drive performance, but none
can accurately model individual requests.
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A significant component of the access time is rotation time, which is
very high frequency (about a million oscillations, even worse than what
is depicted above). Most machine learning approaches cannot learn
periodic patterns, except by memorization of every period.

Solution
To find the frequencies, we first perform a Fourier analysis of access
times in a random read workload. We then augment the input vector
(which originally contained only the start and end sectors) with sines
and cosines of the start and end sectors using the strong frequencies.

Neural net with shared weights
a

sin(2πa/p1)

cos(2πa/p1)

b

sin(2πb/p1)

cos(2πb/p1)

...

We know that we have two groups of inputs that are structurally iden-
tical. By encoding this into the neural net, we reduce the error. Weight
sharing means that all the connection weights in subnet 1 are equal to
the corresponding connection weights in subnet 2.
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Fourier transform
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Full 2D Fourier spectrum for the first K = 237,631 sectors out to 200
K ×

200
K = 8.42 · 10−4 × 8.42 · 10−4, which corresponds to periods of at least
1/(8.42 · 10−4) = 1188.155 sectors. Plot is clipped to magnitude 1 to
show detail, but central spike goes up to 8.6, and other diagonal spikes
go up to 3.9. Because our input data is sparse, we cannot use the FFT
and must compute the Fourier transform with brute force. However,
note that strong frequencies lie on the diagonal v = −u. By searching
only this line, we reduce computation time considerably.

f̂(u, v) =

∫∫
f(a, b)e−2πi(au+bv) da db

Access times over the first 4 tracks
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Results
Configuration Error (ms)
constant value 2.013± 0.000

D
ec
is
io
n
tr
ee
s no periods, without bagging 2.075± 0.014

no periods, with bagging 2.067± 0.001
6 random periods, without bagging 2.019± 0.013
6 random periods, with bagging 2.015± 0.013
6 periods, without bagging 1.649± 0.154
6 periods, with bagging 1.123± 0.009

N
eu
ra
ln

et
s

no periods, without subnets 2.014± 0.034
no periods, with subnets 2.012± 0.019
6 random periods, without subnets 1.924± 0.176
6 random periods, with subnets 1.992± 0.059
6 periods, without subnets 0.954± 0.052
6 periods, with subnets 0.830± 0.031

RMS errors for predictions over the first 237,631 sectors (94 tracks) with a random read workload.

Decision trees
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Decision trees work by recursively partitioning the parameter space. For
efficiency reasons, they usually use axis-orthogonal splits, and they are
greedy (meaning they always choose the split that results in the best
immediate partitioning).

Interdependence
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Our input parameters are highly interdependent. This means that
knowledge of a single value gives you no knowledge of the output value.
Knowledge of multiple input values are necessary to gain any knowledge
of the output value. This is a hard case for decision trees.

Hard drive internals
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