Towards enabling cooperation between scheduler and
storage layer to improve job performance

Mayank Pundir
University of lllinois at
Urbana-Champaign
pundir2@illinois.edu

Cristina L. Abad
University of lllinois at
Urbana-Champaign

cabad@illinois.edu

ABSTRACT

In distributed, data-intensive computing platforms, provid-
ing fast access to data is critical. A way to do this is to
maximize data locality. To improve data locality, previ-
ous research has proposed replicating and caching hot data
across the nodes. However, these schemes cannot speed-up
the first access to a file, since at its first access, a file has
not become “hot”.

We present Scheduled Caching, a technique that lever-
ages information available to the job scheduler to improve
caching. The job scheduler provides hints about the ac-
cess patterns of files to the storage layer, which can then
pre-fetch and cache input data right before it needs to be
processed. Our initial experiments show that this technique
can improve job performance by as much as 2.3x, and in-
crease completion time by only 2.3% over the ideal (calcu-
lated when all input data is originally in memory).

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]|: Distributed
Systems— Distributed applications; H.3.4 [Information Stor-

age and Retrieval]: Systems and Software—Distributed
systems

Keywords

Hadoop, HDFS, Caching, Memory Locality, Scheduler, Dat-
acenter

1. INTRODUCTION

Frameworks like Giraph, Pig, and Hive are commonly
used in data-intensive applications. Because these frame-
works are data-intensive, their efficiency is bottlenecked, to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PDSW ’13 Denver, CO USA

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

John Bellessa
University of lllinois at
Urbana-Champaign
belless1@illinois.edu

Shadi A. Noghabi
University of lllinois at
Urbana-Champaign
abdolla2@illinois.edu

Roy H. Campbell
University of lllinois at
Urbana-Champaign

rhc@illinois.edu

a major extent, by either disk I/O time or network transfer
time. To this end, several efforts have been made by the
research community to increase disk locality of the jobs run-
ning on these models. However, with the emergence of high-
throughput datacenter network designs, such as full bisec-
tion network topologies, achieving disk locality is not enough
and a goal of memory locality is frequently sought [1] (e.g.,
by caching data intelligently).

In this paper, we present Scheduled Caching, a technique
that helps provide scheduled memory locality, i.e. memory
locality at just the right time. Scheduled Caching enables
collaboration between the scheduler layer and the storage
layer to provide this timeliness. The hints provided by the
scheduler to the storage layer facilitate pre-fetching the re-
quired files to memory right before the tasks need them.

2. SCHEDULED CACHING

To exploit the use of memory locality, our goal is to en-
able coordination between the scheduler and the file system
layer. Before running a task, the scheduler knows about the
tasks that are a part of the next job, their execution loca-
tion (e.g. node X in Hadoop) and the files required by these
tasks. Schedulers, like those found in Pig and Hive, build
an execution plan, in the form of a directed acyclic graph
of jobs. Scheduled Caching takes this information and then
sends hints to the file system. Specifically, we propose us-
ing two kinds of hints — but this can be generalized to any
information that the scheduler is able to pass onto the file
system:

1. Pre-fetch: Scheduler hints the file system to bring the
files that are going to be used next into memory.

2. Do not evict: Scheduler hints the file system to not
persist on disk those files which are going to be used
again soon.

These hints assist the decision of which new files should
be placed in the memory, as well as the removal of files that
have a low probability of being accessed in the near future.

Whenever the scheduler determines which files will be re-
quired by the next task, it issues an API call to the metadata
server (MDS) of the storage system (i.e., the namenode in
HDFS) giving the details of the file and the task location.
Next, the MDS issues the fetch command to the appropriate

8.9

8.8

8.7

8.6

0.5

8.4

8.3

Percentage of Completed Jobs

8.2

8.1

-] 1888 2808 3000 4608 H8e8 6888
Execution Time (seconds}

Figure 1: CDF of job completion times.

storage node (i.e., datanode in HDFS). The storage node,
upon receiving the fetch request, fetches the file.

If there is not enough room in memory to accommodate
the file to be fetched, additional space will be freed up by
evicting some other files. To this end, we propose using an
aging algorithm that increases the age of the file — based on
metrics like popularity, size, last-accessed time and so on,
according to a particular workload’s characteristics — and
removes the file with the highest age.

Finally, the scheduler issues the job execute command to
actually run its next task with the files required by the task
already in memory.

3. PROOF OF CONCEPT

To demonstrate the performance improvement that can
be expected from Scheduled Caching, we have built a proof-
of-concept prototype. The prototype is built for Hadoop
scheduler and HDFS.

3.1 Implementation

For the purposes of our proof-of-concept, we have adopted
a simplified version of the architecture. We use two layers
of HDFS: one layer completely on disk, and another layer
in memory. Memory HDFS stores its files in a directory
mounted with tmpfs. Given such a design, we can simplify
the problem to pre-fetching the required file from disk HDF'S
to memory HDFS. This setup guarantees memory presence.
However, memory HDFS takes care of providing memory
locality using its default locality technique.

We have extended the FileSystem API provided by HDFS
to Hadoop by implementing two fetch calls. The first fetch
call fetches a specified file to the destination file system. The
second fetch call fetches the specified directory to destination
file system. These two functionalities allow us to modify
the Hadoop scheduler to pass the pre-fetch hints to the file
system layer.

3.2 Evaluation

We ran our preliminary tests on a cluster with a master
and 10 other slave nodes. tmpfs has been mounted with
exactly half of main memory on each node i.e. the master
has 5 GB in its tmpfs folder and slaves have 2.5 GB each in

their tmpfs folders.

We use the SWIM benchmark [3] to evaluate our pro-
totype. We have used 46 jobs from the benchmark with
varying levels of map-heavy, shuffle-heavy and reduce-heavy
jobs. The SWIM workload had to be scaled to an 11 node
cluster (by doubling the input) and the same scaled up ver-
sion has been used for all experiments.

Figure 1 provides a comparison of the execution times
of the SWIM benchmark when performed on three setups:
unmodified, on-disk HDFS; unmodified, in-memory HDFS
(using tmpfs); and HDFS with pre-fetching. As shown in
Figure 1, both the in-memory and pre-fetching versions com-
plete 100% of the jobs at around 2000 seconds, while the disk
version has completed less than half. With pre-fetching, we
observe an average performance improvement of about 2.3x
over disk, while incurring a penalty of only 2.3% over the
in-memory version (average completion time of 1130.69 sec-
onds, as compared with 1105.37 seconds).

From the figure, we also observe that roughly 40% of the
tasks do not see any improvements. We hypothesize that the
amount of data consumed by these tasks is relatively small
and, thus, the disk I/O time is dominated by the actual
computation time.

4. RELATED WORK

Recent work [1] has shown that disk locality is becoming
irrelevant, partially due to the introduction of full-bisection
network topologies, and that going forward, memory locality
will be an increasingly more significant metric. PACMan [2]
tries to ensure that all files required by a task are cached
in memory so that the performance improvement of mem-
ory locality is not decreased by straggling tasks; however, it
cannot improve the memory locality of a task that operates
on a file that has not been processed earlier. RAMCloud [4]
proposes keeping all the data in memory; however, this so-
lution is expensive and not always feasible. Spark [5] uses
the iterative nature of tasks to cache intermediate output
data in memory and use the cached data for subsequent it-
erations; pre-fetching is not considered.

5. CONCLUSION AND FUTURE WORK

In this paper, we discussed the increasing importance of
memory locality over disk locality. To this end, we present
Scheduled Caching. The primary contribution of Scheduled
Caching is an architecture that enables task schedulers —
such as those found in Hadoop and systems built on top
of Hadoop — to provide hints to underlying storage layers
about future file access patterns. We then described our
prototype implementation which is built on top of a dual-
HDFS system. We are able to improve job performance by
as much as 2.3x, and within 2.3% over the ideal (calculated
when all input data is originally in memory).

Given our promising results, we have considered several
possible significant extensions for future research. The most
immediate is to extend the prototype to higher layers like Pig
and Hive. One direction for future work is using RDMA for
improving access to data across the network when memory
locality is not achieved. Another potential direction is to
enable MapReduce tasks to begin reading data even as it
is still being loaded from disk. Finally, we have considered
designing a memory-aware scheduler that schedules tasks
whose input data are already in memory before the others.

6.
[1]

2

3]

[4

[5]

REFERENCES

G. Ananthanarayanan, A. Ghodsi, S. Shenker, and

I. Stoica. Disk-locality in datacenter computing
considered irrelevant. In Proceedings of the 13th
USENIX conference on Hot topics in operating systems,
pages 12-12. USENIX Association, 2011.

G. Ananthanarayanan, A. Ghodsi, A. Wang,

D. Borthakur, S. Kandula, S. Shenker, and I. Stoica.
Pacman: Coordinated memory caching for parallel jobs.
In USENIX NSDI, 2012.

Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. The
case for evaluating mapreduce performance using
workload suites. In Modeling, Analysis & Simulation of
Computer and Telecommunication Systems
(MASCOTS), 2011 IEEE 19th International
Symposium on, pages 390-399. IEEE, 2011.

J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,
J. Leverich, D. Mazieres, S. Mitra, A. Narayanan,

G. Parulkar, M. Rosenblum, et al. The case for
ramclouds: scalable high-performance storage entirely
in dram. ACM SIGOPS Operating Systems Review,
43(4):92-105, 2010.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,
and I. Stoica. Spark: cluster computing with working
sets. In Proceedings of the 2nd USENIX conference on
Hot topics in cloud computing, pages 10-10, 2010.

