
Introduction

Accelerating Reverse Lookup in HDFS using Replicated

BlockReport

Junyao Zhang, Jun Wang
Departments of EECS, University of Central Florida, 4000 Univ. Blvd., Orlando FL 32816

Background

Reverse Lookup Time at scale

According to [1], a capacity of 10PB HDFS will have 100 million files and 200

million blocks. As shown in this Figure, browsing two million entries requires

more than three minutes, and it will increase linearly with the growth of the data

size. To examine the reverse lookup time at scale, we manually twist the HDFS

default block size to 1MB. In this way, a large number of blocks will be

generated within a relatively small data size. The data is retrieved on Marmot 64

nodes HDFS[2]. While 25 seconds are needed for browsing 50 thousand inode

entries, more than three minutes are consumed to browse 200 million metadata

entries,

Methods
The HDFS maintains its namespace in memory and the blockreport is the way for

HDFS to rapidly generate a overview of the block distribution over the file system.

Blockreport is created and sent to namenode whenever a node starts up and then

periodically checks in with namenode for the block distribution map. Namenode

compares the blockreport information with its own namespace and conduct

necessary operations such as remove, add etc.

Our solution:

 Upon initialization, beside sending the blockreport to namenode; replicate two

copies of blockreport on neighbor nodes, which is the smallest two comparing the

hash value. Randomly choose one if collision occurs. This allows fast lookup

(Time complexity O(1)).

 When getting blockreport with new time-stamp, compare with the existing one and

generate a blockreport diff--blkDelta

 Whenever sending a blockreport is sent to namenode, send blkDelta to the other

two copies.

 Namenode acquires blockreport following the hash table lookup when heartbeat

timeout.

In today's a peta-scale ware-house clusters, node failure

has become norm instead of a rare situation. Despite the

state-of-art solutions such as multi-way replication, the first

question popped up is that after node failure, how does the

system retrieve the information of the missing blocks

quickly and efficiently. We define this problem as Reverse

Lookup (RL). In this work, we study the RL problem in

Hadoop Distributed File System(HDFS), which is one of

the most popular distributed storage system for hosting big

data applications. We observe that current RL solution for

HDFS is slow and inefficient---the namenode (metadata

server) has to browse the whole content of the metadata

inode tree to retrieve the metadata for the missing blocks.

Especially with the rapid expanding of storage size, this

traversal method could become a potential hazard for

recovery. In this work, we explore the possibility of utilizing

the Blockreport for fast and efficient reverse lookup. The

key insight is that, the block list is prestored in the

blockreport, which is current used to build upt the block

distribution map for namenode. Thus by keeping the

availability of blockreport, the list of missing blocks can be

easily retrieved.

In HDFS, when the namenode detects this condition of

heartbeat absence, it marks that datanode as dead and

stops sending IO requests to that datanode. Meanwhile, the

namenode browses its whole metadata inode tree to find the

missing blocks resulted by the this datanode death and

conduct “minus one” operation on their replication numbers.

When the replication number for a chunk falls below than

the threshold, the namenode will initiate a re-replication

process for this block.

 RL Problem: retrieving the block list for the failed node

 Existing Solution: Browsing the whole metadata tree; time

complexity is O(N), where N is the total number of

metadata inode entries. Linear increasing.

Future work
1. Study the performance impact of replicated blockreport and the recovery time.

2. Seeking more optimization opportunities to speedup reverse lookup time such as using SDN to prioritize the network

packages.

The Overall Design of replicating blockreport and

using it for fast reverse lookup

The steps of reverse lookup in HDFS; Reverse

lookup is the first thing to do after the node

failure.

Storage and Network Overhead
The size of a blockreport is only related to the data size located on a particular

node. It is related to

Storage overhead: each block is kept in 2 long types (64*2=128 bits) in the

blockreport array list. In a HDFS with n nodes and Bi blocks in the i-th node,

storage overhead is 256 𝑖=1
𝑛 𝐵𝑖 bits.

Network transfer overhead: HDFS default update blockreport one hour a

time; the first time incurs 256 𝑖=1
𝑛 𝐵𝑖 bits transfer; after that only blkDelta*2

Reverse Lookup Time Results
HDFS built on 32 nodes of PRObE Marmot cluster; 2TB HDD; 1Gbps shared network.

Traversal time is large and it increase with the growth of total data size, while RL time using replicated blockreport size

finishes within 0.5 seconds.

Average speedup of RL using blockreplication is 27 time for 4MB, 8 times for 16MB and 30 times for 64MB.

Reference
1. HDFS Scalability: The Limits to Growth, The Magazine of USENIX, Vol. 35, No. 2. (April 2010), pp. 6-16 by Konstantin V.

Shvachko

2. An Integrated Experimental Environment for Distributed Systems and Networks, Proceedings of the {USENIX} Symposium on

Operating System Design and Implementation (OSDI), Dec 2002, B. White and J. Lepreau, L. Stoller, R. Ricci and S.

Guruprasad, M. Newbold, M. Hibler, Chad Barb, Abhijeet Joglekar

The work uses some of PRObE clusters which are supported in part by the National Science Foundation under awards CNS-1042537 and CNS-1042543 (PRObE).

