
Type	equation	here.

Background Experimental Results

Problems

Conclusion

ScalScheduling Architecture
 For interactive data processing, a job should

be finished in seconds
> Gene sequence search (mpiBLAST)
> Interactive visualization (ParaView)
> Data analysis (Log processing)

Multiple schedulers: keep track of the data
processing tasks.

 Each worker process: a novel Modulo‐based
priority method to schedule its own local tasks (as
long as local data exists).

 If no local data exits, a scheduler will assign a
remote task to an idle worker.

Modulo-based Method

 A scalable scheduling architecture to
support task request/assignment for a large
number of worker processes running in
parallel data intensive applications.

 Performance improvement over monolithic
scheduling architectures

We will incorporate ScalScheduling into real
workloads.

ScalScheduling: Scalable Scheduling for MPI-based Data Analytic Programs
Jiangling Yin, Andrew Foran, Xuhong Zhang and Jun Wang (jyin@eecs.ucf.edu) 

Department of Electrical Engineering & Computer Science, University of Central Florida

 Program execution time comparison on
Marmot (NSF PRObE cluster)

 To reuse historical data, a scheduler with
data locality consideration is a must.

 However, scheduling a task causes hundreds
of milliseconds latency when taking data
locality into consideration.

 A example with f=12, m=2, n=6 and the local tasks
sorted with the Modulo‐based method.

 To mitigate data movement overhead: a local
disk cache implemented at compute node,
enables running process to reuse locally
stored history data.

Acknowledgement

 This material is based upon work supported
by the National Science Foundation under
the following NSF program: Parallel
Reconfigurable Observational Environment
for Data Intensive Super‐Computing and
High Performance Computing (PRObE).


