
Type	equation	here.

Background Experimental Results

Problems

Conclusion

ScalScheduling Architecture
 For interactive data processing, a job should

be finished in seconds
> Gene sequence search (mpiBLAST)
> Interactive visualization (ParaView)
> Data analysis (Log processing)

Multiple schedulers: keep track of the data
processing tasks.

 Each worker process: a novel Modulo‐based
priority method to schedule its own local tasks (as
long as local data exists).

 If no local data exits, a scheduler will assign a
remote task to an idle worker.

Modulo-based Method

 A scalable scheduling architecture to
support task request/assignment for a large
number of worker processes running in
parallel data intensive applications.

 Performance improvement over monolithic
scheduling architectures

We will incorporate ScalScheduling into real
workloads.

ScalScheduling: Scalable Scheduling for MPI-based Data Analytic Programs
Jiangling Yin, Andrew Foran, Xuhong Zhang and Jun Wang (jyin@eecs.ucf.edu) 

Department of Electrical Engineering & Computer Science, University of Central Florida

 Program execution time comparison on
Marmot (NSF PRObE cluster)

 To reuse historical data, a scheduler with
data locality consideration is a must.

 However, scheduling a task causes hundreds
of milliseconds latency when taking data
locality into consideration.

 A example with f=12, m=2, n=6 and the local tasks
sorted with the Modulo‐based method.

 To mitigate data movement overhead: a local
disk cache implemented at compute node,
enables running process to reuse locally
stored history data.

Acknowledgement

 This material is based upon work supported
by the National Science Foundation under
the following NSF program: Parallel
Reconfigurable Observational Environment
for Data Intensive Super‐Computing and
High Performance Computing (PRObE).


