Structuring PLFS for Extensibility

Chuck Cranor, Milo Polte, Garth Gibson (Carnegie Mellon University)

e HPC applications checkpoint to a single shared file
 The filesystem must:
> Make new checkpoint files visible on all nodes at creation time
> Support highly concurrent writes at widely varying offsets
 Cloud storage systems such as the Hadoop File Systems (HDFS) are
optimized for cloud-based applications such as Map Reduce
e POSIX /O semantics are relaxed to improve performance:
> Only one node can have a file open for writing
> All writes are append-only; re-open = truncate
o Storage allocated to HDFS does not work for N-1 checkpointing
> Extensibility in PLFS can help solve this problem

Extensibility in PLFS

 Logical FileSystem: supports multiple filesystem types
 Container Index API interface: easily change indexing schemes
e |/O Store: uses non-POSIX backends

HPC Application
fuse mpi libplfs

PLFS high—-level API

v

logical FS interface

flat | small |container % 2000
file file e
P
index API s 1000
byte- it S
oYt |pattern) distributed g 500
E

/O store
interface

posix | pvfs | iofs| | hdfs

libhdfs MDHIM
libc, etc Iib%vm w/LevelDB
hdfs.jar

HDFS 1/O Store

e Must map PLFS I/O Store calls to HDFS API, 3 cases:
1. Direct mapping: read maps to hdfsPread()
2. Mapping with minor adjustments
e POSIX file descriptor to hdfsFile handle structure
e owner/group int ids vs. owner/group strings
 POSIX file/dir creation API sets permissions too, HDFS does not
3. Not possible (device files, symbolic links)

Carnegie Mellon University

Parallel Log Structured Filesystem (PLFS)

* FUSE or MPIl-based filesystem that decouples concurrent
writes by logging each node's writes separately
> Improves performance by avoiding sharing bottlenecks
» PLFS's log structured writes fit the limited semantics of

HDFS cloud storage

HPC APP ON PLFS-HDFS

Node 1 Node 2 Node 3 c LPC
oncurrent
0 O O Application
PLFS PLFS PLFS Writers
PLFS Virtuglized File View
L
(1] mm Bm HDFS storage
mm S EN (tri-replicated)
B () [[

Platform: Marmot PRODE cluster

e 1.6GHz AMD Opteron dual processor, 16GB memory, 1GE

e Hadoop HDFS 0.21.0, FUSE 2.8, PLFS, OrangeFS 2.8.4 (PVFS)

e LANL test fs N-1 benchmark with 47001, 48K, or 1M ranges

6 test cases: PVFS, HDFS1 (no replication), HDFS3 (3 way
replication) through a kernel mount point and a library API

Write Bandwidth (64 nodes)

PVFS-kern-write
PVFS-lib-write
HDFS1-kern-write
HDFS1-lib-write
HDFS3-kern-write
HDF S3-lib-write

read bandwidth (Mbytes/s)

47001 48K 1M
access unit size (bytes)

10001

500

Read Bandwidth (64 nodes)

PVFS-kern-read
PVFS-lib-read
HDFS1-kern-read
HDFS1-lib-read
HDFS3-kern-read
HDFS3-lib-read

o

ull ol

47001 48K 1M
access unit size (bytes)

 PLFS/HDFS is roughly comparable to PVFS
> writes: HDFS1 always writes to local disk (fast, no network)
e HDFS3 has 3x replication overhead
* PVFS network limited with small access size
> reads: HDFS benefits from PLFS' log structured writes
 Kernel buffer cache hurts 47001 reads due to page alignment

e 1M HDFS suffers from extra overhead of Java/data copies
e 1M HDFS1 outperforms HDFS3 due to balanced I/O pattern

HDFS1 and HDFS3 I/O Access Pattern

— HFDS1

— HDFS3
1000 - ﬂ

|

|

\,

Y LJAVA

Al
500 -
J

Total size of data
served (MB)

! ! ! |
10 20 30

L
40

Node number

50 60

Parallel Data
Laboratory

il

