
Structuring PLFS for Extensibility

Problem
Chuck Cranor, Milo Polte, Garth Gibson (Carnegie Mellon University)

• HPC applications checkpoint to a single shared file
• The filesystem must:

› Make new checkpoint files visible on all nodes at creation time
› Support highly concurrent writes at widely varying offsets

• Cloud storage systems such as the Hadoop File Systems (HDFS) are
optimized for cloud-based applications such as Map Reduce

• POSIX I/O semantics are relaxed to improve performance:
› Only one node can have a file open for writing
› All writes are append-only; re-open = truncate

• Storage allocated to HDFS does not work for N-1 checkpointing
› Extensibility in PLFS can help solve this problem

PLFS PLFS PLFS

Node 1 Node 2 Node 3
Concurrent HPC

Application
Writers

PLFS Virtualized File View

HDFS storage
(tri-replicated)

HPC APP ON PLFS-HDFS

Parallel Log Structured Filesystem (PLFS)
• FUSE or MPI-based filesystem that decouples concurrent

writes by logging each node's writes separately
› Improves performance by avoiding sharing bottlenecks
› PLFS's log structured writes fit the limited semantics of

HDFS cloud storage

• PLFS/HDFS is roughly comparable to PVFS
› writes: HDFS1 always writes to local disk (fast, no network)
• HDFS3 has 3x replication overhead
• PVFS network limited with small access size

› reads: HDFS benefits from PLFS' log structured writes
• Kernel buffer cache hurts 47001 reads due to page alignment
• 1M HDFS suffers from extra overhead of Java/data copies
• 1M HDFS1 outperforms HDFS3 due to balanced I/O pattern

HDFS I/O Store
• Must map PLFS I/O Store calls to HDFS API, 3 cases:

1. Direct mapping: read maps to hdfsPread()
2. Mapping with minor adjustments
• POSIX file descriptor to hdfsFile handle structure
• owner/group int ids vs. owner/group strings
• POSIX file/dir creation API sets permissions too, HDFS does not

3. Not possible (device files, symbolic links)

Results
Platform: Marmot PRObE cluster
• 1.6GHz AMD Opteron dual processor, 16GB memory, 1GE
• Hadoop HDFS 0.21.0, FUSE 2.8, PLFS, OrangeFS 2.8.4 (PVFS)
• LANL test_fs N-1 benchmark with 47001, 48K, or 1M ranges
• 6 test cases: PVFS, HDFS1 (no replication), HDFS3 (3 way

replication) through a kernel mount point and a library API

10 20 30 40 50 60
Node number

0

500

1000

To
ta

l s
iz

e
of

 d
at

a
se

rv
ed

 (M
B

)

HFDS1
HDFS3

HDFS1 and HDFS3 I/O Access Pattern

47001 48K 1M
access unit size (bytes)

0

500

1000

re
ad

 b
an

dw
id

th
 (M

by
te

s/
s) PVFS-kern-read

PVFS-lib-read
HDFS1-kern-read
HDFS1-lib-read
HDFS3-kern-read
HDFS3-lib-read

Read Bandwidth (64 nodes)

47001 48K 1M
access unit size (bytes)

0

500

1000

1500

2000

w
rit

e
ba

nd
w

id
th

 (M
by

te
s/

s)

PVFS-kern-write
PVFS-lib-write
HDFS1-kern-write
HDFS1-lib-write
HDFS3-kern-write
HDFS3-lib-write

Write Bandwidth (64 nodes)

Extensibility in PLFS
• Logical FileSystem: supports multiple filesystem types
• Container Index API interface: easily change indexing schemes
• I/O Store: uses non-POSIX backends

distributed

PLFS high−level API

interface
I/O store

hdfsiofslpvfsposix

small
filefile

flat
logical FS interface

container

libhdfs
libjvm
hdfs.jar

HPC Application
fuse mpi libplfs

MDHIM
w/LevelDBlibc, etc.

index API
patternbyte−

range

