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e HPC applications checkpoint to a single shared file
 The filesystem must:
> Make new checkpoint files visible on all nodes at creation time
> Support highly concurrent writes at widely varying offsets
 Cloud storage systems such as the Hadoop File Systems (HDFS) are
optimized for cloud-based applications such as Map Reduce
e POSIX /O semantics are relaxed to improve performance:
> Only one node can have a file open for writing
> All writes are append-only; re-open = truncate
o Storage allocated to HDFS does not work for N-1 checkpointing
> Extensibility in PLFS can help solve this problem

Extensibility in PLFS

 Logical FileSystem: supports multiple filesystem types
 Container Index API interface: easily change indexing schemes
e |/O Store: uses non-POSIX backends
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e Must map PLFS I/O Store calls to HDFS API, 3 cases:
1. Direct mapping: read maps to hdfsPread()
2. Mapping with minor adjustments
e POSIX file descriptor to hdfsFile handle structure
e owner/group int ids vs. owner/group strings
 POSIX file/dir creation API sets permissions too, HDFS does not
3. Not possible (device files, symbolic links)

Carnegie Mellon University

Parallel Log Structured Filesystem (PLFS)

* FUSE or MPIl-based filesystem that decouples concurrent
writes by logging each node's writes separately
> Improves performance by avoiding sharing bottlenecks
» PLFS's log structured writes fit the limited semantics of

HDFS cloud storage
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Platform: Marmot PRODE cluster

e 1.6GHz AMD Opteron dual processor, 16GB memory, 1GE

e Hadoop HDFS 0.21.0, FUSE 2.8, PLFS, OrangeFS 2.8.4 (PVFS)

e LANL test fs N-1 benchmark with 47001, 48K, or 1M ranges

6 test cases: PVFS, HDFS1 (no replication), HDFS3 (3 way
replication) through a kernel mount point and a library API
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 PLFS/HDFS is roughly comparable to PVFS
> writes: HDFS1 always writes to local disk (fast, no network)
e HDFS3 has 3x replication overhead
* PVFS network limited with small access size
> reads: HDFS benefits from PLFS' log structured writes
 Kernel buffer cache hurts 47001 reads due to page alignment

e 1M HDFS suffers from extra overhead of Java/data copies
e 1M HDFS1 outperforms HDFS3 due to balanced I/O pattern

HDFS1 and HDFS3 I/O Access Pattern
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