
DataMods 
Programmable File System Services 

Noah Watkins*, Carlos Maltzahn, Scott Brandt 
UC Santa Cruz, *Inktank 

 
Adam Manzanares 

California State University, Chico 

1 



Talk Agenda 

1. Middleware and modern IO stacks 
2. Services in middleware and parallel file systems 
3. Avoid duplicating work with DataMods 
4. Case study: Checkpoint/restart 

2 



Why DataMods? 

• Applications struggle to scale on POSIX I/O 
• Parallel FS rarely provide other interfaces 

– POSIX I/O designed to prevent lock-in 

• Open-source PFS are now available 
– Ability to avoid lock-in 

• Can we generalize PFS services to provide new 
behavior to new users? 
 
 

3 



Application Middleware 

4 

• Complex data models and interfaces 
• Difficult to work directly with simple byte stream 
• Middleware maps the complex onto the simple 



Middleware Complexity Bloat 

5 

• Hadoop and “Big Data” data models 
– Ordered key/value pairs stored in file 
– Dictionary for random key-oriented access 
– Common table abstractions 



Middleware Complexity Bloat 

6 

• Scientific data 
– Multi-dimensional arrays 
– Imaging 
– Genomics 



Middleware Complexity Bloat 

7 

• IO Middleware 
– Low-level data models and I/O optimization 
– Transformative I/O avoids POSIX limitations 



Middleware Scalability Challenges 

8 

• Scalable storage system 
• Exposes one data model 
• Must find ‘magic’ alignment 



Data Model Modules 

• Plugin new “file” interfaces and behavior 
• Native support; atop existing scalable services 

9 

New behavior 

Generalized 
storage services 

Pluggable 
customization 
(new programmer role) 



What does middleware do? 

Metadata 
Management 

Data 
Placement 

Intelligent 
Access 

Asynchronous 
Services 

10 



Middleware: Metadata Management 

• Byte stream layout 
• Data type information 
• Data model attributes 
• Example: Mesh Data Model 

– How is the mesh represented? 
– What does it represent? 

11 

He
ad

er
 

File 



Middleware: Data Placement 

• Serialization 
• Placement index 
• Physical alignment 

– Including the metadata 

• Example: Mesh Data Model 
– Vertex lists 
– Mesh elements 
– Metadata 

12 

He
ad

er
 

Data 

Data 

Data 

Met
a 

Met
a 



Middleware: Intelligent Access 

• Data model specific interfaces 
• Rich access methods 

– Views, subsetting, filtering 

• Write-time optimizations 
• Locality and data movement 

13 

He
ad

er
 

Data 

Data 

Data 

Met
a 

Met
a 

HD
F5

 L
ib

ra
ry

 

Array-based 
Application 

read(array-slice) 



Middleware: Asynchronous Services 

• Workflows 
– Regridding 

• Compression 
• Indexing 
• Layout optimization 
• Performed online 

14 

He
ad

er
 

Data 

Data 

Data 

Met
a 

Met
a 

Workflow 
Driver 

HD
F5

 L
ib

ra
ry

 



Middleware Challenges 

• Inflexible byte stream abstraction 
• Scalability rules are simple 

– But middleware is complex 

• Applying ‘magic number’ 
– Unnatural and difficult to propogate 

• Loss of detail at lower-levels 
– Difficult for in-transit / co-located compute 

15 



Storage System Services 

• Scalable meta data 
– Clustered service 
– Scalability invariants 

• Distributed object store 
– Local compute resources 
– Define new behavior 

• File operations 
– POSIX 

• Fault-tolerance 
– Scrubbing and replication 

 
 16 



DataMods Abstraction 

File Manifold 
(Metadata and Data Placement) 

Typed and Active 
Storage 

Asynchronous 
Services 

17 



DataMods Architecture 

• Generalized file system services 
• Exposed through programming model 

18 



File Manifold 
• Metadata management and data placement 

– Flexible, custom layouts 
• Extensible interfaces 
• Object namespace managed by manifold 
• Placement rules evaluated by system 

19 



Typed and Active Storage 

• Active storage adoption has been slow 
– Code injection is scary 
– Security and QoS 

• Reading, writing, and checksums are not free 
• Exposing scalable services is tractable 

– Well-defined data models supports optimization 
– Programming model support data model creation 
– Indexing and filtering 

20 



Asynchronous Services 

• Re-use of active / typed storage components 
• Temporal relationship to file manifold 

– Incremental processing 
– After file is closed 
– Object update trigger 

• Scheduling 
– Exploit idle time 
– Integrate with larger ecosystem 
– Preempted or aborted 

 
21 



Case Study: PLFS Checkpoint/Restart 

• Long-running simulations need fault-tolerance 
– Checkpoint simulation state 

• Simulations run on expensive machines 
– Very expensive machines. Really, very expensive. 

• Decrease cost (time) of checkpoint/restart 
• Translation: increase bulk I/O bandwidth 

22 



Overview of PLFS 

• Middleware layer 
– Transforms I/O pattern 

• IO Pattern: N-1 
– Most common 

• IO Pattern: N-N 
– File system friendly 

• Convert N-1 into N-N 
• Applications see the same logical file 

 
23 



Simplified PLFS I/O Behavior 

Client 1 Client 2 Client 3 

Log-structured 

Index 

Log-structured 

Index 

Log-structured 

Index 

24 

Parallel Log-structured File System 



PLFS Scalability Challenges 

• Index maintenance and volume 
• Optimization above file system 

– Compression and reorganization 

25 

Application PLFS File System 

Optimization 
Process 

Ti
m

e 

Co
m

pu
te

 



Moving Overhead to Storage System 

• Checkpoints are not read immediately (if at all) 
– Index maintenance and optimization in storage 

26 

Application PLFS File System 

Optimization 
Process 

Ti
m

e 

Co
m

pu
te

 

Return to 
compute 
sooner 



DataMods Module for PLFS 

• File Manifold 
– Logical file view 
– Per-process log-structured files 
– Index 

• Hierarchical Solution 
– Top-level manifold routes to logs 
– Inner manifold implements log-structured file 
– Automatic namespace management (metadata) 

27 



PLFS Outer File Manifold 

28 

Logical top-half file 
is not materialized 



PLFS Outer File Manifold 

29 

Logical top-half file 
is not materialized 

Routes to per-
process log file 



PLFS Inner File Manifold 

30 

Logical top-half file 
is not materialized 

Routes to per-
process log file 

Append striping 
within object 
namespace 



PLFS Inner File Manifold 

31 

Logical top-half file 
is not materialized 

Routes to per-
process log file 

Append striping 
within object 
namespace 

Index-enabled 
objects record 
logical-to-phy 



PLFS Inner File Manifold 

32 

Logical top-half file 
is not materialized 

Routes to per-
process log file 

Append striping 
within object 
namespace 

Index-enabled 
objects record 
logical-to-phy 

Interface to index 
maintenance 

routines 



Active and Typed Objects 

• Append-only object 
• Automatic indexing 
• Managed layout 
• Built on existing services 
• Logical view at lowest level 
• Index maintenance interface 



Offline Index Optimization 

• Extreme index fragmentation (per-object) 
• Exploit opportunities for optimization 

– Storage system idle time 
– Re-use of analysis I/O 
– Piggy-backed on scrubbing / healing 

• Index Compression 
– Merging contiguous entries 
– Pattern discovery and replacement 
– Consolidation 

34 



Offline Index Optimization 

• Three stage pipeline 
– Incremental compression and consolidation 

• Incremental compression 
1. Merging physically contiguous entries (in PLFS) 

• Not subject to buffer size limits 

 
 

• Applied technique to 92 PLFS indexes 
published by LANL 
 

35 



Merging Reduces PLFS Index Size 

1 

10 

100 

1000 

10000 

100000 

1000000 

10000000 

1 11 21 31 41 51 61 71 81 91 

N
um

be
r o

f I
nd

ex
 E

nt
rie

s 

PLFS Map File 

Raw Trace (Baseline) 

Merge Compress 

Contiguous Writes 

Large, Strided 

36 



Index Compression: Pattern 

• Compactly represent extents using patterns 
• Example pattern template 

– offset + stride * i, low < i < high 

• Fit data to this pattern to reduce index size 
• Linear algorithm; parallel across logs 

37 



Pattern Compression Improves Over 
Merging 

1 

10 

100 

1000 

10000 

100000 

1000000 

10000000 

1 11 21 31 41 51 61 71 81 91 

N
um

be
r o

f I
nd

ex
 E

nt
rie

s 

PLFS Map File 

Raw Trace (Baseline) 

Merge Compress 

Pattern Compress 

Strided pattern identified 

38 



Index Consolidation 

• Combines all logs together (in PLFS) 
• Increases index read efficiency 

39 

 In
de

x 
Co

ns
ol

id
at

io
n 

… 
Index 
Pack 



Wrapping Up 

• Implementing new data model plugins 
– Hadoop and Visualization 
– Refining API with more use cases 
– Constructing specification language 

• Thank you to supporters 
– DOE funding (DE-SC0005428), Gary Grider 

John Bent, James Nunez 
• Questions? --- jayhawk@cs.ucsc.edu 
• Poster session 

 
40 

mailto:jayhawk@cs.ucsc.edu


Extra Slides 

 

41 



Index Reduction Improvements 

42 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

Pa
tt

er
nI

O
.4

7K
.5

 
Pa

tt
er

nI
O

.4
7K

.4
 

Pa
tt

er
nI

O
.4

7K
.1

 
Pa

tt
er

nI
O

.4
7K

.6
 

Pa
tt

er
nI

O
.4

7K
.2

 
LA

N
L_

Ap
p3

.6
4.

m
a 

LA
N

L_
Ap

p1
.6

4.
dm

 
LA

N
L_

Ap
p2

.m
pi

io
 

ch
om

bo
.5

12
.m

ap
 

ch
om

bo
.1

28
.m

ap
 

fla
sh

.8
PE

.h
df

5_
 

fla
sh

.3
2P

E.
hd

f5
 

fla
sh

.1
28

PE
.h

df
 

fla
sh

.5
12

PE
.h

df
 

fla
sh

.1
6P

E.
hd

f5
 

fla
sh

.6
4P

E.
hd

f5
 

fla
sh

.2
56

PE
.h

df
 

ch
om

bo
.3

2.
m

ap
 

st
rid

ed
.8

PE
.1

0M
 

fla
sh

.1
6P

E.
hd

f5
 

fla
sh

.6
4P

E.
hd

f5
 

fla
sh

.2
56

PE
.h

df
 

Pa
tt

er
nI

O
.1

0M
B.

 
Pa

tt
er

nI
O

.1
0M

B.
 

Pa
tt

er
nI

O
.1

0M
B.

 
Pa

tt
er

nI
O

.1
0M

B.
 

Pa
tt

er
nI

O
.1

0M
B.

 
st

rid
ed

.8
PE

.1
0M

 
st

rid
ed

.1
6P

E.
10

 
st

rid
ed

.2
4P

E.
10

 
st

rid
ed

.3
2P

E.
10

 
st

rid
ed

.4
0P

E.
10

 
st

rid
ed

.4
8P

E.
10

 
st

rid
ed

.5
6P

E.
10

 
st

rid
ed

.6
4P

E.
10

 
st

rid
ed

.1
28

PE
.1

 
no

ns
tr

id
ed

.8
PE

. 
no

ns
tr

id
ed

.2
4P

E 
no

ns
tr

id
ed

.4
0P

E 
no

ns
tr

id
ed

.5
6P

E 
no

ns
tr

id
ed

.1
28

P 
no

ns
tr

id
ed

.1
PE

. 
no

ns
tr

id
ed

.3
PE

. 
no

ns
tr

id
ed

.5
PE

. 
no

ns
tr

id
ed

.7
PE

. 
Pa

tt
er

nI
O

.1
0M

B.
 

Re
du

ct
io

n 
Fa

ct
or

 o
ve

r B
as

el
in

e 

Reduction from Merging Reduction from Pattern 

Global reduction 

HDF5 Indexing, 
Data reorganization 


	DataMods
	Talk Agenda
	Why DataMods?
	Application Middleware
	Middleware Complexity Bloat
	Middleware Complexity Bloat
	Middleware Complexity Bloat
	Middleware Scalability Challenges
	Data Model Modules
	What does middleware do?
	Middleware: Metadata Management
	Middleware: Data Placement
	Middleware: Intelligent Access
	Middleware: Asynchronous Services
	Middleware Challenges
	Storage System Services
	DataMods Abstraction
	DataMods Architecture
	File Manifold
	Typed and Active Storage
	Asynchronous Services
	Case Study: PLFS Checkpoint/Restart
	Overview of PLFS
	Simplified PLFS I/O Behavior
	PLFS Scalability Challenges
	Moving Overhead to Storage System
	DataMods Module for PLFS
	PLFS Outer File Manifold
	PLFS Outer File Manifold
	PLFS Inner File Manifold
	PLFS Inner File Manifold
	PLFS Inner File Manifold
	Active and Typed Objects
	Offline Index Optimization
	Offline Index Optimization
	Merging Reduces PLFS Index Size
	Index Compression: Pattern
	Pattern Compression Improves Over Merging
	Index Consolidation
	Wrapping Up
	Extra Slides
	Index Reduction Improvements

