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Talk Agenda 

1. Middleware and modern IO stacks 
2. Services in middleware and parallel file systems 
3. Avoid duplicating work with DataMods 
4. Case study: Checkpoint/restart 
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Why DataMods? 

• Applications struggle to scale on POSIX I/O 
• Parallel FS rarely provide other interfaces 

– POSIX I/O designed to prevent lock-in 

• Open-source PFS are now available 
– Ability to avoid lock-in 

• Can we generalize PFS services to provide new 
behavior to new users? 
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Application Middleware 
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• Complex data models and interfaces 
• Difficult to work directly with simple byte stream 
• Middleware maps the complex onto the simple 



Middleware Complexity Bloat 
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• Hadoop and “Big Data” data models 
– Ordered key/value pairs stored in file 
– Dictionary for random key-oriented access 
– Common table abstractions 



Middleware Complexity Bloat 
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• Scientific data 
– Multi-dimensional arrays 
– Imaging 
– Genomics 



Middleware Complexity Bloat 
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• IO Middleware 
– Low-level data models and I/O optimization 
– Transformative I/O avoids POSIX limitations 



Middleware Scalability Challenges 
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• Scalable storage system 
• Exposes one data model 
• Must find ‘magic’ alignment 



Data Model Modules 

• Plugin new “file” interfaces and behavior 
• Native support; atop existing scalable services 
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New behavior 

Generalized 
storage services 

Pluggable 
customization 
(new programmer role) 



What does middleware do? 

Metadata 
Management 

Data 
Placement 

Intelligent 
Access 

Asynchronous 
Services 
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Middleware: Metadata Management 

• Byte stream layout 
• Data type information 
• Data model attributes 
• Example: Mesh Data Model 

– How is the mesh represented? 
– What does it represent? 
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Middleware: Data Placement 

• Serialization 
• Placement index 
• Physical alignment 

– Including the metadata 

• Example: Mesh Data Model 
– Vertex lists 
– Mesh elements 
– Metadata 
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Middleware: Intelligent Access 

• Data model specific interfaces 
• Rich access methods 

– Views, subsetting, filtering 

• Write-time optimizations 
• Locality and data movement 
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Middleware: Asynchronous Services 

• Workflows 
– Regridding 

• Compression 
• Indexing 
• Layout optimization 
• Performed online 
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Middleware Challenges 

• Inflexible byte stream abstraction 
• Scalability rules are simple 

– But middleware is complex 

• Applying ‘magic number’ 
– Unnatural and difficult to propogate 

• Loss of detail at lower-levels 
– Difficult for in-transit / co-located compute 
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Storage System Services 

• Scalable meta data 
– Clustered service 
– Scalability invariants 

• Distributed object store 
– Local compute resources 
– Define new behavior 

• File operations 
– POSIX 

• Fault-tolerance 
– Scrubbing and replication 
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DataMods Abstraction 

File Manifold 
(Metadata and Data Placement) 

Typed and Active 
Storage 

Asynchronous 
Services 
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DataMods Architecture 

• Generalized file system services 
• Exposed through programming model 
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File Manifold 
• Metadata management and data placement 

– Flexible, custom layouts 
• Extensible interfaces 
• Object namespace managed by manifold 
• Placement rules evaluated by system 
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Typed and Active Storage 

• Active storage adoption has been slow 
– Code injection is scary 
– Security and QoS 

• Reading, writing, and checksums are not free 
• Exposing scalable services is tractable 

– Well-defined data models supports optimization 
– Programming model support data model creation 
– Indexing and filtering 
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Asynchronous Services 

• Re-use of active / typed storage components 
• Temporal relationship to file manifold 

– Incremental processing 
– After file is closed 
– Object update trigger 

• Scheduling 
– Exploit idle time 
– Integrate with larger ecosystem 
– Preempted or aborted 
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Case Study: PLFS Checkpoint/Restart 

• Long-running simulations need fault-tolerance 
– Checkpoint simulation state 

• Simulations run on expensive machines 
– Very expensive machines. Really, very expensive. 

• Decrease cost (time) of checkpoint/restart 
• Translation: increase bulk I/O bandwidth 
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Overview of PLFS 

• Middleware layer 
– Transforms I/O pattern 

• IO Pattern: N-1 
– Most common 

• IO Pattern: N-N 
– File system friendly 

• Convert N-1 into N-N 
• Applications see the same logical file 
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Simplified PLFS I/O Behavior 

Client 1 Client 2 Client 3 

Log-structured 

Index 

Log-structured 

Index 

Log-structured 

Index 
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PLFS Scalability Challenges 

• Index maintenance and volume 
• Optimization above file system 

– Compression and reorganization 
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Moving Overhead to Storage System 

• Checkpoints are not read immediately (if at all) 
– Index maintenance and optimization in storage 
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DataMods Module for PLFS 

• File Manifold 
– Logical file view 
– Per-process log-structured files 
– Index 

• Hierarchical Solution 
– Top-level manifold routes to logs 
– Inner manifold implements log-structured file 
– Automatic namespace management (metadata) 
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PLFS Outer File Manifold 
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Logical top-half file 
is not materialized 



PLFS Outer File Manifold 

29 

Logical top-half file 
is not materialized 

Routes to per-
process log file 



PLFS Inner File Manifold 
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Logical top-half file 
is not materialized 

Routes to per-
process log file 

Append striping 
within object 
namespace 



PLFS Inner File Manifold 
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Logical top-half file 
is not materialized 

Routes to per-
process log file 

Append striping 
within object 
namespace 

Index-enabled 
objects record 
logical-to-phy 



PLFS Inner File Manifold 
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Logical top-half file 
is not materialized 

Routes to per-
process log file 

Append striping 
within object 
namespace 

Index-enabled 
objects record 
logical-to-phy 

Interface to index 
maintenance 

routines 



Active and Typed Objects 

• Append-only object 
• Automatic indexing 
• Managed layout 
• Built on existing services 
• Logical view at lowest level 
• Index maintenance interface 



Offline Index Optimization 

• Extreme index fragmentation (per-object) 
• Exploit opportunities for optimization 

– Storage system idle time 
– Re-use of analysis I/O 
– Piggy-backed on scrubbing / healing 

• Index Compression 
– Merging contiguous entries 
– Pattern discovery and replacement 
– Consolidation 
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Offline Index Optimization 

• Three stage pipeline 
– Incremental compression and consolidation 

• Incremental compression 
1. Merging physically contiguous entries (in PLFS) 

• Not subject to buffer size limits 

 
 

• Applied technique to 92 PLFS indexes 
published by LANL 
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Merging Reduces PLFS Index Size 
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Index Compression: Pattern 

• Compactly represent extents using patterns 
• Example pattern template 

– offset + stride * i, low < i < high 

• Fit data to this pattern to reduce index size 
• Linear algorithm; parallel across logs 
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Pattern Compression Improves Over 
Merging 
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Index Consolidation 

• Combines all logs together (in PLFS) 
• Increases index read efficiency 
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Wrapping Up 

• Implementing new data model plugins 
– Hadoop and Visualization 
– Refining API with more use cases 
– Constructing specification language 

• Thank you to supporters 
– DOE funding (DE-SC0005428), Gary Grider 

John Bent, James Nunez 
• Questions? --- jayhawk@cs.ucsc.edu 
• Poster session 
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Extra Slides 

 

41 



Index Reduction Improvements 
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