
A case for scaling
HPC metadata performance

through de-specialization
Kai Ren

Swapnil Patil, Garth Gibson
PARALLEL DATA LABORATORY

Carnegie Mellon University

Why Scalable Metadata Service?
•  Applications use directories as a light-weight

database (e.g. check pointing)
•  Concurrent execution of data-intensive apps

•  By 2020, Exascale-era clusters expected to have
up to one billion cores [DARPA08]

•  Need to scale metadata service for cluster FS
•  GIGA+: directory partitioning [PDSW07, FAST11]
•  SkyeFS: layered GIGA+ on top of PVFS [Chivetta12]

– Exploiting PVFS atomic rename across servers

 Kai Ren © Nov 2012 http://www.pdl.cmu.edu/ 2

Scaling Metadata in Existing CFSs
•  Goal: want a layered (de-specialized) solution

•  Add scalable metadata to many cluster file systems
– Cluster FS with single metadata server (Lustre)
– Federated Cluster File System (PanFS, HDFS v2)

•  Solution:
•  Apply GIGA+ without dependence on rename
•  Use a new directory representation to decouple

metadata distribution from data distribution

 Kai Ren © Nov 2012 http://www.pdl.cmu.edu/ 3

Directories in Cluster File Systems

Spring 2012" 4

•  Entire namespace in a single metadata server

GoogleFS
Lustre
HDFS

 Kai Ren © Nov 2012

Cluster FS with Multi-Mount Points

Spring 2012" 5

•  Mount multiple original metadata servers
•  Partition namespace and data servers
•  Client-side mount table for sub-tree access
•  No namespace balance (MDS CPU or capacity)
•  Only partial data bandwidth per sub-tree

Lustre
HDFS Mount

Table
App

U
se
r	

CFS
Client

CFS
Client

Data Servers Metadata Servers
 Kai Ren © Nov 2012

Cluster FS with Multi-Mount Points

Spring 2012" 6

•  Mount multiple original metadata servers
•  Partition namespace into sub-trees
•  Client-side mount table for sub-tree access
•  No namespace balance (MDS CPU or capacity)
•  Statically partition each data node for full BW

Lustre
HDFS

Mount
Table

App

U
se
r	

CFS
Client

CFS
Client

Data Servers Metadata Servers
 Kai Ren © Nov 2012

Federated Cluster File Systems

Spring 2012" 7

•  Dynamically share all data servers
•  No capacity limitation for each sub-tree

•  Statically partition namespace to sub-trees
•  Size of each sub-tree not auto-balanced
•  Each directory limited to one server

Federated
HDFS
PanFS

Data Servers Metadata Servers
 Kai Ren © Nov 2012

Global
Namespace

Scaling Metadata of Federated CFS

Spring 2012" 8

•  Apply GIGA+ without dependence on rename
•  Balance the size of each sub-tree
•  Large directories are spread across servers

Federated
HDFS
PanFS

Data Servers

Metadata Servers
 Kai Ren © Nov 2012

Global
Namespace

Outline
•  Overview
ü System Design

•  GIGA+: Distributed Index Technique
•  System Architecture

•  Directory Representation
•  Design & Single Node Performance

•  Integrating GIGA+ with TableFS
•  Directory Partition Migration
•  Preliminary Scalability Result

•  Summary

 Kai Ren © Nov 2012 http://www.pdl.cmu.edu/ 9

How GIGA+ Stores Directories?
•  Large directories split into partitions across servers

•  Hash mapping: hash(filename) à partition (server ID)
•  Incremental growth: directory starts with one server
•  Binary splitting without global synchronization

 Kai Ren © Nov 2012"http://www.pdl.cmu.edu/ 10

S0 S1 S2

Metadata Server-side View

/big2/.P0/
…

/big2/.P1/
…

/big2/.P2/
…

/small/
_S1.txt
_S2.txt
_S3.txt
…

All
!les

/big1/.P0/
_b1
_b4
_b6
…

50%
!les

/big1/.P1/
_b2
_b3
_b5
…

50%
!les

Client

$ ls /!
!
/small!
/big1!
/big2!
...!

Middleware Layering Approach

 Kai Ren © Nov 2012"http://www.pdl.cmu.edu/
11

•  Decoupling Metadata and Data Path
•  Layerable on various federated cluster file systems
•  GIGA+ server load balances metadata
•  Simple scheme uses cluster file system for directories

Swapnil Patil © 10/27/10http://www.pdl.cmu.edu/ 5

GIGA+ Prototype

•  Decouple distributed indexing from on-disk
storage management

**Layering on ClusterFS discussed later

Cluster file
systems

GIGA+ server Metadata Path GIGA+
client

Apps

FUSE

U
se
r	

CFS Client CFS Client

Data Path

Data Servers Metadata Servers

SkyeFS: GIGA+PVFS

 Kai Ren © Nov 2012"http://www.pdl.cmu.edu/
12

•  Previous implementation: SkyeFS [Chivetta12]
•  Directory partitions are stored as PVFS directories
•  Splits use atomic, no-copy rename across metadata

servers (or GIGA+ would need to do copying)

PVFS

Data Servers Metadata Servers

/big1/.P0/
_b1
_b4
_b6
…

50%
!les

/big1/.P1/
_b2
_b3
_b5
…

50%
!les

/big1/.P0/
_b1,
_b2,
_b3,
_b4,
_b5,
_b6
…

MDS1
MDS1 MDS2

Split

Rename in PVFS doesn’t do file data copy

Logical
path:
/big1/

Directory Representaion

 Kai Ren © Nov 2012"http://www.pdl.cmu.edu/
13

•  Simple schema: partitions stored as CFS directories
•  Implement directories above cluster file systems

•  Decouple rename from cluster file systems
•  Keeps a symbolic link to hidden CFS “objects”
•  Split is to move symbolic links not move files

•  Because HPC has big files, this is essential

/big1/.P0/
_b1
_b4
_b6
…

50%
!les

/big1/.P1/
_b2
_b3
_b5
…

50%
!les

/big1/.P0/
_b1,
_b2,
_b3,
_b4,
_b5,
_b6
…

MDS1
MDS1 MDS2

Split

Simple schema on other CFS:
may need file movement

TableFS as Directory Representation

 Kai Ren © Nov 2012"http://www.pdl.cmu.edu/
14

•  TableFS [Ren11] manages directory partitions
•  Logically put metadata and small files into a table

•  Use direct CFS paths for large file access
•  Physically, table is managed as LSM Tree [O’Neil96]

Swapnil Patil © 10/27/10http://www.pdl.cmu.edu/ 5

GIGA+ Prototype

•  Decouple distributed indexing from on-disk
storage management

**Layering on ClusterFS discussed later

GIGA+
client

Apps

FUSE

U
se
r	

Data Path

GIGA+ server

TableFS Library

Local FS CFS Client

Directory
entries,
Inodes,
Small files Large files

Cluster FS

Metadata Table Schema
•  Key: <Parent inode number, hash(filename)>
•  Value: filename, inode attributes, inlined file

data (or symbolic link to object in cluster FS).

 Kai Ren © Nov 2012"http://www.pdl.cmu.edu/ 15

Key Value
<0,hash(home)> 1, “home”, struct stat
<1,hash(alice)> 2, “alice”, struct stat
<1,hash(bob)> 3, “bob”, struct stat
<1,hash(carol)> 4, “carol”, struct stat
<2,hash(book)> 5, “book”, struct stat,

Inline file data
<2,hash(apple)> 6, “apple”, struct stat,

File data pointer

Le
xi

co
gr

ap
hi

c
or

de
r

book

/

home

alice
bob

apple

0

32

1

4

5

carol

6

Metadata Table Schema (cont’)
•  Advantages:

•  Reduce random lookups by collocating directory
entries with inode attributes, and small files

•  “readdir” performs sequential scan on the table

 Kai Ren © Nov 2012"http://www.pdl.cmu.edu/ 16

Entries in
the same
directory

Key Value
<0,hash(home)> 1, “home”, struct stat
<1,hash(alice)> 2, “alice”, struct stat
<1,hash(bob)> 3, “bob”, struct stat
<1,hash(carol)> 4, “carol”, struct stat
<2,hash(book)> 5, “book”, struct stat,

Inline file data
<2,hash(apple)> 6, “apple”, struct stat,

File data pointer

Log-structured Merge Tree
•  Insert / Updates in LSM Tree

•  Buffer and sort recent inserts/updates in memory
•  Flush buffer to disk as immutable sorted log
•  Only performs large sequential writes
•  Many fewer random writes vs traditional B-Tree

Kai Ren © Nov 2012"http://www.pdl.cmu.edu/ 17

(1, a) (3, b) … …

Sorted buffer

Memory
Disk / Object Store

(1,c) (4,d) (5,e)

(1,f) (6,e) (7,g)

Sorted Table 1

Sorted Table 2

……

LSM Tree (cont’)
•  Lookup / Scan

•  Search sorted tables one by one from the disk
•  Bloom-filter and in-memory index reduce lookups
•  Read performance comparable to traditional B-Tree

•  Background compaction
•  Merge sort sorted tables with overlapping key range
•  Remove deleted key-value pairs

Kai Ren © Nov 2012"http://www.pdl.cmu.edu/ 18

(1, a) (3, b) … …
Sorted buffer
Memory Disk / Object store

(1,c) (4,d) (5,e)

(1,f) (6,e) (7,g)

Sorted Table 1

Sorted Table 2
Lookup

Single Node TableFS Performance
•  Creating 100 million zero-length files in one dir.

•  Memory size is 16GB; layered on ext4 local FS
•  Starting from an empty file system
•  Moving throughput average over 10 second window

•  TableFS runs 10X faster than today’s local FSs

 Kai Ren © Nov 2012"http://www.pdl.cmu.edu/ 19

TableFS finishes, but other
FSs are still in progress

Metadata-only Benchmark
•  Workload: issue 2 million random lookups

(stat), or updates (chmod /utime) in one node
•  TableFS is 1.5 to 10X faster than local file

systems.

 Kai Ren © Nov 2012"http://www.pdl.cmu.edu/ 20

Log scale
151

103

87

44

322

213

142

114

11111

1279

490

518

TableFS

XFS

EXT4

BTRFS

Average Throughput (ops/second)

1500MB 700MB 350MB

Metadata-only: Disk Traffic
•  LSM Tree reduces random disk writes

•  Memory size: 350MB

 Kai Ren © Nov 2012"http://www.pdl.cmu.edu/ 21

22

485

990

484

1,779

1,710

1,790

3,532

0 1000 2000 3000 4000

TableFS

XFS

EXT4

BTRFS

DiskReadRequests (K) DiskWriteRequests (K)

Outline
•  Overview
•  System Design

•  GIGA+: Distributed Index Technique
•  System Architecture

•  Directory Representation
•  Design & Single Node Performance

ü Integrating GIGA+ with TableFS
•  Directory Partition Migration
•  Scalability Result

•  Summary

 Kai Ren © Nov 2012 http://www.pdl.cmu.edu/ 22

Directory Partition Migration

 Kai Ren © Nov 2012"http://www.pdl.cmu.edu/
23

•  TableFS stores partitions as sorted tables in CFS
•  Splitting a directory partition:

•  Bulk insert sorted tables into TableFS of target server
•  By passing only pathnames in RPC messages

•  No file data movement during split of directory partition

Sorted Table

Bulk
Insert

Cluster file
systems

Sender

Receiver

GIGA+ server

TableFS Lib

CFS Client

GIGA+ server

TableFS Lib

CFS Client

Current Implementation

 Kai Ren © Nov 2012"http://www.pdl.cmu.edu/
24

•  Use Google LevelDB (a variant of LSM Tree)
•  Store sorted tables in local file system

•  Splitting a directory partition
•  Move split sorted tables through NFS volume

•  In-progress: port to Federated HDFS and PanFS

Sorted Table

Bulk
Insert

Sender

Receiver

GIGA+ server

TableFS Lib

Local FS

GIGA+ server

TableFS Lib

Local FS

NFS Volume

Prelim. Giga+TableFS Scalability
•  GIGA+TableFS run on a 64-node cluster

•  Uses local file systems (Ext4) for TableFS
•  NFS to move split directory partitions

•  Workload:
•  Concurrent create in a strong scaling experiment
•  Creating 1 million files per server
•  All files are created in one directory
•  Starting from an empty file system

 Kai Ren © Nov 2012"http://www.pdl.cmu.edu/ 25

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

 0 50 100 150 200 250 300 350 400 450

F
i
l
e
s

c
r
e
a
t
e
d

p
e
r

s
e
c
o
n
d

Time (seconds)

Incremental growth phase
 (shaded area)

64 servers

32 servers

16 servers

8 servers

4 servers

2 servers

1 server

Prelim. Giga+TableFS Scalability
•  Performance result

•  Scales to 64 nodes and ~160K files creates/s
•  Achieve almost linear scalability

 Kai Ren © Nov 2012"http://www.pdl.cmu.edu/ 26

Cluster specs
-  dual cores
-  16GB RAM
-  1 GigE NIC
-  7200rpm disk

Summary
•  GIGA+ for scalable, parallel directory indexing

•  Incremental growth without global synchronization

•  TableFS to represent directory partitions
•  Packing metadata and small files into large objects

•  Combine the two to scale metadata service

•  On-going work
•  Layering GIGA+TableFS on PanFS, Federated HDFS
•  Improve partition splitting and LevelDB compaction

 Kai Ren © Nov 2012"http://www.pdl.cmu.edu/ 27

Reference

•  [Ren12] TableFS: Enhancing metadata efficiency in local file systems.

Kai Ren and Garth Gibson. CMU Techical report CMU-PDL-12-110
•  [Chivetta12] SkyeFS: Distributed Directories using Giga+ and PVFS.

Anthony Chivetta, Swapnil Patil & Garth Gibson. Technical Report
CMU-PDL-12-104, May 2012.

•  [Patil11] Scale and Concurrency in GIGA+: File System Directories with
Millions of Files. Swapnil Patil and Garth Gibson. FAST 2011

•  [Dean11] LevelDB: A fast, lightweight key-value database library. Jeff
Dean and Sanjay Ghemawat. http://leveldb.googlecode.com.

•  [DARPA08] ExaScale Computing Study:Technology Challenges in
Achieving Exascale Systems. Peter Kogge and et al.

•  [Patil07] GIGA+: Scalable Directories for Shared File Systems. Swapnil
V. Patil, Garth A. Gibson, Sam Lang, Milo Polte, PDSW 2007

•  [O’Neil96] The log-structured merge-tree (LSM-tree). Patrick ONeil and
et al. Acta Informatica, 1996

 Kai Ren © Nov 2012"http://www.pdl.cmu.edu/ 28

