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Why Scalable Metadata Service? 
•  Applications use directories as a light-weight 

database (e.g. check pointing) 
•  Concurrent execution of data-intensive apps  

•  By 2020, Exascale-era clusters expected to have 
up to one billion cores [DARPA08]  

•  Need to scale metadata service for cluster FS 
•  GIGA+: directory partitioning [PDSW07, FAST11] 
•  SkyeFS: layered GIGA+ on top of PVFS [Chivetta12] 

– Exploiting PVFS atomic rename across servers 
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Scaling Metadata in Existing CFSs 
•  Goal: want a layered (de-specialized) solution 

•  Add scalable metadata to many cluster file systems 
– Cluster FS with single metadata server (Lustre) 
– Federated Cluster File System (PanFS, HDFS v2) 
 

•  Solution:  
•  Apply GIGA+ without dependence on rename 
•  Use a new directory representation to decouple 

metadata distribution from data distribution 
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Directories in Cluster File Systems 
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•  Entire namespace in a single metadata server 

GoogleFS 
Lustre 
HDFS 
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Cluster FS with Multi-Mount Points 
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•  Mount multiple original metadata servers 
•  Partition namespace and data servers 
•  Client-side mount table for sub-tree access 
•  No namespace balance (MDS CPU or capacity) 
•  Only partial data bandwidth per sub-tree 
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Cluster FS with Multi-Mount Points 
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•  Mount multiple original metadata servers 
•  Partition namespace into sub-trees 
•  Client-side mount table for sub-tree access 
•  No namespace balance (MDS CPU or capacity) 
•  Statically partition each data node for full BW 
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Federated Cluster File Systems 
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•  Dynamically share all data servers 
•  No capacity limitation for each sub-tree 

•  Statically partition namespace to sub-trees 
•  Size of each sub-tree not auto-balanced  
•  Each directory limited to one server 
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Scaling Metadata of Federated CFS 

Spring 2012" 8 

•  Apply GIGA+ without dependence on rename 
•  Balance the size of each sub-tree  
•  Large directories are spread across servers 
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Outline 
•  Overview 
ü System Design 

•  GIGA+: Distributed Index Technique 
•  System Architecture 

•  Directory Representation 
•  Design & Single Node Performance 

•  Integrating GIGA+ with TableFS 
•  Directory Partition Migration 
•  Preliminary Scalability Result 

•  Summary 
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How GIGA+ Stores Directories? 
•  Large directories split into partitions across servers 

•  Hash mapping: hash(filename) à partition (server ID) 
•  Incremental growth: directory starts with one server 
•  Binary splitting without global synchronization 
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Middleware Layering Approach 
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•  Decoupling Metadata and Data Path 
•  Layerable on various federated cluster file systems 
•  GIGA+ server load balances metadata 
•  Simple scheme uses cluster file system for directories 
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GIGA+ Prototype 

•  Decouple distributed indexing from on-disk 
storage management 

**Layering on ClusterFS discussed later 
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SkyeFS: GIGA+PVFS 
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•  Previous implementation: SkyeFS [Chivetta12] 
•  Directory partitions are stored as PVFS directories 
•  Splits use atomic, no-copy rename across metadata 

servers (or GIGA+ would need to do copying) 
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Directory Representaion 
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•  Simple schema: partitions stored as CFS directories 
•  Implement directories above cluster file systems 

•  Decouple rename from cluster file systems 
•  Keeps a symbolic link to hidden CFS “objects” 
•  Split is to move symbolic links not move files 

•  Because HPC has big files, this is essential 
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TableFS as Directory Representation 
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•  TableFS [Ren11] manages directory partitions 
•  Logically put metadata and small files into a table 

•  Use direct CFS paths for large file access 
•  Physically, table is managed as LSM Tree [O’Neil96] 
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GIGA+ Prototype 

•  Decouple distributed indexing from on-disk 
storage management 

**Layering on ClusterFS discussed later 
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Metadata Table Schema 
•  Key: <Parent inode number, hash(filename)> 
•  Value: filename, inode attributes, inlined file 

data (or symbolic link to object in cluster FS). 
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Key Value 
<0,hash(home)> 1, “home”, struct stat 
<1,hash(alice)> 2, “alice”, struct stat 
<1,hash(bob)> 3, “bob”, struct stat 
<1,hash(carol)> 4, “carol”, struct stat 
<2,hash(book)> 5, “book”, struct stat,  

Inline file data 
<2,hash(apple)> 6, “apple”, struct stat, 

File data pointer 
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Metadata Table Schema (cont’) 
•  Advantages:  

•  Reduce random lookups by collocating directory 
entries with inode attributes, and small files 

•  “readdir” performs sequential scan on the table 
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Log-structured Merge Tree 
•  Insert / Updates in LSM Tree 

•  Buffer and sort recent inserts/updates in memory 
•  Flush buffer to disk as immutable sorted log 
•  Only performs large sequential writes 
•  Many fewer random writes vs traditional B-Tree 

 

Kai Ren © Nov 2012"http://www.pdl.cmu.edu/ 17 

(1, a) (3, b) … …

Sorted buffer 

Memory 
Disk / Object Store 

(1,c) (4,d) (5,e) 

(1,f) (6,e) (7,g) 

Sorted Table 1 

Sorted Table 2 

…… 



LSM Tree (cont’) 
•  Lookup / Scan 

•  Search sorted tables one by one from the disk 
•  Bloom-filter and in-memory index reduce lookups 
•  Read performance comparable to traditional B-Tree 

•  Background compaction 
•  Merge sort sorted tables with overlapping key range 
•  Remove deleted key-value pairs 
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Single Node TableFS Performance 
•  Creating 100 million zero-length files in one dir. 

•  Memory size is 16GB; layered on ext4 local FS 
•  Starting from an empty file system 
•  Moving throughput average over 10 second window 

•  TableFS runs 10X faster than today’s local FSs 
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TableFS finishes, but other 
FSs are still in progress 



Metadata-only Benchmark 
•  Workload: issue 2 million random lookups 

(stat), or updates (chmod /utime) in one node 
•  TableFS is 1.5 to 10X faster than local file 

systems. 
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Metadata-only: Disk Traffic 
•  LSM Tree reduces random disk writes 

•  Memory size: 350MB 
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Outline 
•  Overview 
•  System Design 

•  GIGA+: Distributed Index Technique 
•  System Architecture 

•  Directory Representation 
•  Design & Single Node Performance 

ü Integrating GIGA+ with TableFS 
•  Directory Partition Migration 
•  Scalability Result 

•  Summary 
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Directory Partition Migration 
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•  TableFS stores partitions as sorted tables in CFS 
•  Splitting a directory partition:  

•  Bulk insert sorted tables into TableFS of target server 
•  By passing only pathnames in RPC messages 

•  No file data movement during split of directory partition 
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Current Implementation 
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•  Use Google LevelDB (a variant of LSM Tree)  
•  Store sorted tables in local file system 

•  Splitting a directory partition  
•  Move split sorted tables through NFS volume 

•  In-progress: port to Federated HDFS and PanFS 
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Prelim. Giga+TableFS Scalability 
•  GIGA+TableFS run on a 64-node cluster 

•  Uses local file systems (Ext4) for TableFS  
•  NFS to move split directory partitions 

•  Workload:  
•  Concurrent create in a strong scaling experiment  
•  Creating 1 million files per server 
•  All files are created in one directory 
•  Starting from an empty file system 
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Prelim. Giga+TableFS Scalability 
•  Performance result 

•  Scales to 64 nodes and ~160K files creates/s 
•  Achieve almost linear scalability 
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Cluster specs 
-  dual cores 
-  16GB RAM 
-  1 GigE NIC 
-  7200rpm disk 



Summary 
•  GIGA+ for scalable, parallel directory indexing 

•  Incremental growth without global synchronization 

•  TableFS to represent directory partitions 
•  Packing metadata and small files into large objects 

•  Combine the two to scale metadata service  

•  On-going work 
•  Layering GIGA+TableFS on PanFS, Federated HDFS 
•  Improve partition splitting and LevelDB compaction 
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