
An Evolutionary Path to Object Storage
Access

David Goodell+, Seong Jo (Shawn) Kim*, Robert Latham+,
Mahmut Kandemir*, and Robert Ross+

*Pennsylvania State University
+Argonne National Laboratory

Outline

 Introduction
– Background of parallel file systems
– Overview of object storage model
– Goal

 Our approach
– Supporting object access in PVFS
– Using objects in HPC I/O libraries: PLFS and PnetCDF

 Conclusions & future work

PDSW12

2

Parallel File Systems:
What do they do?

 Manage a name space of directories and user data
 Distribute data across many servers (e.g., by managing large

collection of objects)
 Provide a POSIX file “veneer” atop distributed data (e.g., by

mapping a POSIX file abstraction onto a set of objects)
PDSW12

3

C C C C C

Comm. Network

PFS PFS PFS PFS PFS

IOSIOS IOS IOS

H01

/pfs
/astro

H03 /bioH06

H02
H05

H04

H01

/astro

/pfs

/bio

H02
H03
H04

H05 H06

chkpt32.nc

prot04.seq prot17.seq

An example parallel file system, with large astrophysics checkpoints distributed across multiple I/O
servers (IOS) while small bioinformatics files are each stored on a single IOS.

Objects in a POSIX Namespace

PDSW12

4

Parallel File Systems:
Successes

 Current parallel file system designs scale to tens or a few
hundred servers (Big!)

 Individual servers can move data very effectively, given the
right patterns (Fast!)

 Name space is not loved, but mostly ok unless we are creating
files for every process.

PDSW12

5

Parallel File Systems:
What’s the Problem?

 The POSIX file model provides a single byte stream into which
data must be stored

 HPC applications create complex output that are naturally
multi-stream
– Structured datasets (e.g., HDF5, netCDF)
– Log-based datasets (e.g., PLFS, ADIOS BP)

 Dilemma
– Do I create lots of files to hold many streams?

• Stresses the metadata subsystem!
– Do I map many streams into a single file?

• Now I need to understand distribution and locking!

PDSW12

6

The Captain Kirk Solution*

 Expose individual object byte streams for use by I/O libraries
(e.g., Parallel netCDF, PLFS)
– Library becomes responsible for mapping its data structures

into these objects.
 Keep the rest!

– Have directories, organize objects under file names
– Keep permission, etc.

 When software puts you in a no-win situation, re-code it!

PDSW12

7

* See http://en.wikipedia.org/wiki/Kobayashi_Maru

Goal

 Propose an alternative interface for applications and libraries
that provides direct access to underlying storage objects.
– Avoiding lock contention w/o creating many separate files
– Complex data models are easily organized into the multiple

object data stream, simplifying the storage of variable-length
data

– Coexist with POSIX files
 Advantages:

– Separate the creation of multiple data streams from the
creation of names in the name space

– Allow the multiple data streams present in the individual
objects to be directly used for organizational purposes.

PDSW12

8

Our Approach

 Our approach: to expose a set of objects (an ordered list) that
is associated with a single file name (a container)

 Benefit: to move responsibility of mapping application data
structures into the objects from the file system to the libraries
or application.

 Assumption:
– The underlying storage performs consistency management (i.e.,

locking), if any, on a per-object basis
– Creating many objects under a single file name is faster than

creating multiple files in the name space

PDSW12

9

Supporting Object Access in PVFS

 We modified PVFS2 (v2.8.2).
 Only client-side modifications were required to facilitate the

new model.

PDSW12

10

Supporting Object Access in PVFS:
New API

 It’s a quite small interface (7 routines).
– read_contig and write_contig are there only as

convenient special cases of readx and writex, so actually it's
5 routines.

 The interface is stateless.
 The interface provides a "list i/o" interface for more complex

data descriptions in both memory and file.

PDSW12

11

Supporting Object Access in PVFS:
PVFS2 Client Implementation Details

 PVFS2 object model
– Decompose a logical POSIX file into a single metafile and

multiple datafiles
– A distribution function maps logical file extents into extents in

datafiles, identified by a PVFS_object_ref.
 Our prototype reuses these existing concepts.
 Two new state machines were added to the PVFS2 prototype.

– Object collection creation
– Read/write operations to a single object

PDSW12

12

Using Objects in HPC I/O Libraries:
Parallel Log Structured File System (PLFS)

 PLFS is designed to improve write bandwidth for checkpoint.
 PLFS is implemented as a user-space file system, exposed

through FUSE or MPI-IO.
 After writing to a data file, the metadata information is

appended to the associated index file.
 By remapping writes to a non-shared data files, PLFS converts

an N-1 strided access pattern into an N-N.

PDSW12

13

Using Objects in HPC I/O Libraries:
Parallel Log Structured File System (PLFS) (cont’d)

PDSW12

14

Using Objects in HPC I/O Libraries:
PLFS over Object Storage Model

 For our prototype, we plugged
the ad_plfs interface into
ROMIO ADIO layer of MPICH2-
1.5, porting PLFS.

 Application program directly
make MPI-IO calls to reach
PLFS.

 PLFS is modified to support the
new API for object-based
access.

PDSW12

15

Using Objects in HPC I/O Libraries:
PLFS over Object Storage Model (cont’d)

PDSW12

16

Using Object in HPC I/O Libraries:
Parallel netCDF

 PnetCDF provides an interface for parallel reading and writing
of data in the netCDF file format.

 Array can be of fixed dimensions (non-record arrays) or have
one dimension in which they may grow (record arrays).

 Tiles of these record arrays are interleaved in the file so that
space may be allocated as the record arrays grow.

PDSW12

17

Using Objects in HPC I/O Libraries:
Parallel netCDF

 Mapping a PnetCDF dataset into a
POSIX file
– Header data & non-record arrays

come in the POSIX file’s byte
stream.

– Two record arrays are interleaved.
– The flat file is distributed to

servers w/o regard to compatibility
btw FS distribution params and the
layout of netCDF arrays.

 Performance drawbacks: irregularly
aligned access, misaligned data,
and record variable storage

PDSW12

18

Using Objects in HPC I/O Libraries:
PnetCDF over Object Storage Model

 PnetCDF prototype maps the same
dataset into the set of objects.
– The header and each array are

mapped to the set of one or more
objects.

 Benefits:
– simplify the implementation in

reading/writing from/to variables
for non-contiguous access.

– PnetCDF controls the data
distribution on a per-variable basis.

– Avoid misaligned data access

PDSW12

19

Using Objects in HPC I/O Libraries:
PnetCDF over Object Storage Model (cont’d)

 In our prototype, each PnetCDF variables has its own
distribution function.

 Data is striped byte-wise in a row-major fashion.
 More complex distribution could be easily implemented.

PDSW12

20

Other Considerations

 File size
– Our approach moves the role of the distribution function into

application or library space.
– PFS returns the total size of data stored in constituent objects,

which may not deal with “sparse files” accurately.
 Access control and extended attributes

– These two pieces of POSIX functionality should be unchanged.
 Copying collections

– A collection could be copied by creating a new set of objects of
the same size as the collection of objects in the source, and

– Copying the contents of each object into the corresponding
object in the new list.

PDSW12

21

Conclusions and Future Work

 We’ve presented a new abstraction for storage that enables
higher performance for HPC applications while coexisting with
the legacy POSIX name space.

 Our containers of object models maps more closely to both
application/library needs as well as modern storage systems.

 Moving the responsibility of mapping application data
structures into storage objects from the storage system
– Applications control performance
– Simpler implementation

 Is there value in mapping to thousands of objects? vs. an
exploration of the design space for the storage system itself.

 I/O forwarding stacks
PDSW12

22

Questions?

PDSW12

23

