
An Evolutionary Path to Object Storage
Access

David Goodell+, Seong Jo (Shawn) Kim*, Robert Latham+,
Mahmut Kandemir*, and Robert Ross+

*Pennsylvania State University
+Argonne National Laboratory

Outline

 Introduction
– Background of parallel file systems
– Overview of object storage model
– Goal

 Our approach
– Supporting object access in PVFS
– Using objects in HPC I/O libraries: PLFS and PnetCDF

 Conclusions & future work

PDSW12

2

Parallel File Systems:
What do they do?

 Manage a name space of directories and user data
 Distribute data across many servers (e.g., by managing large

collection of objects)
 Provide a POSIX file “veneer” atop distributed data (e.g., by

mapping a POSIX file abstraction onto a set of objects)
PDSW12

3

C C C C C

Comm. Network

PFS PFS PFS PFS PFS

IOSIOS IOS IOS

H01

/pfs
/astro

H03 /bioH06

H02
H05

H04

H01

/astro

/pfs

/bio

H02
H03
H04

H05 H06

chkpt32.nc

prot04.seq prot17.seq

An example parallel file system, with large astrophysics checkpoints distributed across multiple I/O
servers (IOS) while small bioinformatics files are each stored on a single IOS.

Objects in a POSIX Namespace

PDSW12

4

Parallel File Systems:
Successes

 Current parallel file system designs scale to tens or a few
hundred servers (Big!)

 Individual servers can move data very effectively, given the
right patterns (Fast!)

 Name space is not loved, but mostly ok unless we are creating
files for every process.

PDSW12

5

Parallel File Systems:
What’s the Problem?

 The POSIX file model provides a single byte stream into which
data must be stored

 HPC applications create complex output that are naturally
multi-stream
– Structured datasets (e.g., HDF5, netCDF)
– Log-based datasets (e.g., PLFS, ADIOS BP)

 Dilemma
– Do I create lots of files to hold many streams?

• Stresses the metadata subsystem!
– Do I map many streams into a single file?

• Now I need to understand distribution and locking!

PDSW12

6

The Captain Kirk Solution*

 Expose individual object byte streams for use by I/O libraries
(e.g., Parallel netCDF, PLFS)
– Library becomes responsible for mapping its data structures

into these objects.
 Keep the rest!

– Have directories, organize objects under file names
– Keep permission, etc.

 When software puts you in a no-win situation, re-code it!

PDSW12

7

* See http://en.wikipedia.org/wiki/Kobayashi_Maru

Goal

 Propose an alternative interface for applications and libraries
that provides direct access to underlying storage objects.
– Avoiding lock contention w/o creating many separate files
– Complex data models are easily organized into the multiple

object data stream, simplifying the storage of variable-length
data

– Coexist with POSIX files
 Advantages:

– Separate the creation of multiple data streams from the
creation of names in the name space

– Allow the multiple data streams present in the individual
objects to be directly used for organizational purposes.

PDSW12

8

Our Approach

 Our approach: to expose a set of objects (an ordered list) that
is associated with a single file name (a container)

 Benefit: to move responsibility of mapping application data
structures into the objects from the file system to the libraries
or application.

 Assumption:
– The underlying storage performs consistency management (i.e.,

locking), if any, on a per-object basis
– Creating many objects under a single file name is faster than

creating multiple files in the name space

PDSW12

9

Supporting Object Access in PVFS

 We modified PVFS2 (v2.8.2).
 Only client-side modifications were required to facilitate the

new model.

PDSW12

10

Supporting Object Access in PVFS:
New API

 It’s a quite small interface (7 routines).
– read_contig and write_contig are there only as

convenient special cases of readx and writex, so actually it's
5 routines.

 The interface is stateless.
 The interface provides a "list i/o" interface for more complex

data descriptions in both memory and file.

PDSW12

11

Supporting Object Access in PVFS:
PVFS2 Client Implementation Details

 PVFS2 object model
– Decompose a logical POSIX file into a single metafile and

multiple datafiles
– A distribution function maps logical file extents into extents in

datafiles, identified by a PVFS_object_ref.
 Our prototype reuses these existing concepts.
 Two new state machines were added to the PVFS2 prototype.

– Object collection creation
– Read/write operations to a single object

PDSW12

12

Using Objects in HPC I/O Libraries:
Parallel Log Structured File System (PLFS)

 PLFS is designed to improve write bandwidth for checkpoint.
 PLFS is implemented as a user-space file system, exposed

through FUSE or MPI-IO.
 After writing to a data file, the metadata information is

appended to the associated index file.
 By remapping writes to a non-shared data files, PLFS converts

an N-1 strided access pattern into an N-N.

PDSW12

13

Using Objects in HPC I/O Libraries:
Parallel Log Structured File System (PLFS) (cont’d)

PDSW12

14

Using Objects in HPC I/O Libraries:
PLFS over Object Storage Model

 For our prototype, we plugged
the ad_plfs interface into
ROMIO ADIO layer of MPICH2-
1.5, porting PLFS.

 Application program directly
make MPI-IO calls to reach
PLFS.

 PLFS is modified to support the
new API for object-based
access.

PDSW12

15

Using Objects in HPC I/O Libraries:
PLFS over Object Storage Model (cont’d)

PDSW12

16

Using Object in HPC I/O Libraries:
Parallel netCDF

 PnetCDF provides an interface for parallel reading and writing
of data in the netCDF file format.

 Array can be of fixed dimensions (non-record arrays) or have
one dimension in which they may grow (record arrays).

 Tiles of these record arrays are interleaved in the file so that
space may be allocated as the record arrays grow.

PDSW12

17

Using Objects in HPC I/O Libraries:
Parallel netCDF

 Mapping a PnetCDF dataset into a
POSIX file
– Header data & non-record arrays

come in the POSIX file’s byte
stream.

– Two record arrays are interleaved.
– The flat file is distributed to

servers w/o regard to compatibility
btw FS distribution params and the
layout of netCDF arrays.

 Performance drawbacks: irregularly
aligned access, misaligned data,
and record variable storage

PDSW12

18

Using Objects in HPC I/O Libraries:
PnetCDF over Object Storage Model

 PnetCDF prototype maps the same
dataset into the set of objects.
– The header and each array are

mapped to the set of one or more
objects.

 Benefits:
– simplify the implementation in

reading/writing from/to variables
for non-contiguous access.

– PnetCDF controls the data
distribution on a per-variable basis.

– Avoid misaligned data access

PDSW12

19

Using Objects in HPC I/O Libraries:
PnetCDF over Object Storage Model (cont’d)

 In our prototype, each PnetCDF variables has its own
distribution function.

 Data is striped byte-wise in a row-major fashion.
 More complex distribution could be easily implemented.

PDSW12

20

Other Considerations

 File size
– Our approach moves the role of the distribution function into

application or library space.
– PFS returns the total size of data stored in constituent objects,

which may not deal with “sparse files” accurately.
 Access control and extended attributes

– These two pieces of POSIX functionality should be unchanged.
 Copying collections

– A collection could be copied by creating a new set of objects of
the same size as the collection of objects in the source, and

– Copying the contents of each object into the corresponding
object in the new list.

PDSW12

21

Conclusions and Future Work

 We’ve presented a new abstraction for storage that enables
higher performance for HPC applications while coexisting with
the legacy POSIX name space.

 Our containers of object models maps more closely to both
application/library needs as well as modern storage systems.

 Moving the responsibility of mapping application data
structures into storage objects from the storage system
– Applications control performance
– Simpler implementation

 Is there value in mapping to thousands of objects? vs. an
exploration of the design space for the storage system itself.

 I/O forwarding stacks
PDSW12

22

Questions?

PDSW12

23

