
IOPin: Runtime Profiling of Parallel
I/O in HPC Systems

1

Seong Jo (Shawn) Kim*, Seung Woo Son+, Wei-keng Liao+,
Mahmut Kandemir*, Rajeev Thakur#, and Alok Choudhary+

*: Pennsylvania State University
+: Northwestern University
#: Argonne National Laboratory

2

Outline

 Motivation
 Overview
 Background: IOPin
 Technical Details
 Evaluation
 Conclusion & Future Work

Parallel Data Storage Workshop 12

3

Motivation

 Users of HPC systems frequently find that limiting the perfor-
mance of the applications is the storage system, not the CPU,
memory, or network.

 I/O behavior is the key factor to
determine the overall performance.

 Many I/O-intensive scientific
applications use parallel I/O software
stack to access files in high
performance.

 Critically important is understanding
how the parallel I/O system operates
and the issues involved.

 Understand I/O behavior!!!

Parallel Data Storage Workshop 12

4

Motivation (cont’d)

 Manual instrumentation for understanding I/O behavior is
extremely difficult and error-prone.

 Most parallel scientific applications are expected to run on
large-scale systems with 100,000↑ processors to achieve
better resolution.

 Collecting and analyzing the trace data from them is
challenging and burdensome.

Parallel Data Storage Workshop 12

5

Our Approach

 IOPin – Dynamic performance and visualization tool
 We leverage a light-weight binary instrumentation using

probe mode in Pin.
– Language independent instrumentation for scientific applications

written in C/C++ and Fortran
– Neither source code modification nor recompilation of the application

and the I/O stack components
 IOPin provides a hierarchical view for parallel I/O:

– Associating MPI I/O call issued from the application with its sub-calls
in the PVFS layer below

 It provides detailed I/O performance metrics for each I/O call:
I/O latency at each layer, # of disk accesses, disk throughput

 Low overhead: ~ 7%

Parallel Data Storage Workshop 12

6

Background: Pin

 Pin is a software system that performs runtime binary instru-
mentation.

 Pin supports two modes of instrumentation, JIT mode and
probe mode.

 JIT mode uses a just-in-time compiler to recompile the
program code and insert instrumentation; while probe mode
uses code trampolines (jump) for instrumentation.

 In JIT mode, the incurred overhead ranges from 38.7% to 78%
of the total execution time with 32, 64, 128, and 256
processes.

 In probe mode, about 7%.

Parallel Data Storage Workshop 12

7

Overview: IOPin

 The pin process on the client creates two trace log info. for
the MPI library and PVFS client.
– rank, mpi_call_id, pvfs_call_id, I/O type (write/read), latency

Parallel Data Storage Workshop 12

 The pin process on the server
produces a trace log info. with
server_id, latency, processed
bytes, # of disk accesses, and
disk throughput.

 Each log info is sent to the log
manager and the log manager
identifies the process that has
a max. latency.

 Pin process instruments the
target process.

8

Technical DetailsMPI_File_Write_all
High-level
I/O lib.,
or App

PVFS
Client

PVFS
Server

MPI_File_Write_all

PVFS_sys_write

PVFS_sys_io(…, hints)

io_start_flow(*smcb, …) flow_callback(*flow_d, …)

trove_write_callback_fn(*user_ptr, …)

#define PVFS_sys_write(ref,req,off,buf,mem_req,creds,resp)
PVFS_sys_io(ref,req,off,buf,mem_req,creds,resp,

PVFS_IO_WRITE,PVFS_HINT_NULL)

PVFS_sys_io(ref,req,off,buf,mem_req,creds,resp,
PVFS_IO_WRITE,PVFS_hints)

MPI-IO
LIbrary

Original call flow

Server-side
Pin Process

rank, mpi_call_id, pvfs_call_id

rank, mpi_call_id, pvfs_call_id

Generate trace info. for MPI_File_write_all()

Pin call
flow

Pack trace info. into
PVFS_hints

Replace PVFS_HINT_NULL
with PVFS_hints

Client starting point

Client ending point

PVFS_hints

Server starting point

Server ending point

Disk starting/ending point

The server Pin searches hints from *smcb passed
from the traced process, extracts trace info., gener-
ates a log, and sends it to the server log manager.
The server log manager identifies/instruments the
I/O server that has a max. latency.

Client-side
Pin Process

The client Pin sends a log
to the client log manager.
The client log manager
returns a record that has
a max. latency for the I/O.
Pin instruments the
corresponding MPI
process selectively.

Client Log
Manager

Sever Log
Manager

9

Computation Methodology:
Latency and Throughput

 For each I/O operation:
– the I/O latency computed at each layer is the maximum of the I/O

latencies from the layers below.
– I/O throughput computed at any layer is the sum of the I/O throughput

from the layers below

Parallel Data Storage Workshop 12

10

Evaluation

 Hardware:
– Breadboard cluster at Argonne National Laboratory
– 8 quad-core processors per node: support 32 MPI processes
– 16 GB main memory

 I/O stack configuration:
– Application: S3D I/O
– PnetCDF (pnetcdf-1.2.0), mpich2-1.4, pvfs-2.8.2

 PVFS configuration:
– 1 metadata server
– 8 I/O servers
– 256 MPI processes

Parallel Data Storage Workshop 12

11

Evaluation:
S3D-IO

 S3D-IO
– I/O kernel of S3D application
– A parallel turbulent combustion application using a direct numerical

simulation solver developed in SNL

 A checkpoint is performed at regular intervals.
– At each checkpoint, four global arrays―represenƟng the variables of

mass, velocity, pressure, and temperature―are wriƩen to files.

 We maintain the block size of the partitioned X-Y-Z dimension
as 200 * 200 * 200

 It generates three checkpoint files, 976.6MB each.

Parallel Data Storage Workshop 12

12

Evaluation:
Comparison of S3D I/O Execution Time

Parallel Data Storage Workshop 12

13

Evaluation:
Detailed Execution Time of S3D I/O

Parallel Data Storage Workshop 12

14

Evaluation:
I/O Throughput of S3D I/O

Parallel Data Storage Workshop 12

15

Conclusion & Future Work

 Understanding I/O behavior is one of the most important
steps for efficient execution of parallel scientific applications.

 IOPin provides dynamic instrumentation to understand I/O
behavior without affecting the performance:
– no source code modification and recompilation
– a hierarchical view of the I/O call from the MPI lib. to the PVFS server
– metrics: latency of each layer, # of fragmented I/O calls, # of disk

accesses, I/O throughput
– ~7% overhead

 Work is underway: (1) to test IOPin on a very large process
counts, (2) to employ it for runtime I/O optimizations.

Parallel Data Storage Workshop 12

16

Questions?

Parallel Data Storage Workshop 12

