Discovering Structure in Unstructured I/O

Jun He^{1,2}, John Bent³, Aaron Torres⁴, Gary Grider⁴, Garth Gibson⁵, Carlos Maltzahn⁶, Xian-He Sun¹

¹Illinois Institute of Technology
²New Mexico Consortium
³EMC
⁴Los Alamos National Laboratory
⁵Carnegie Mellon University
⁶University of California Santa Cruz

November 12, 2012

Outline

This presentation focuses on recognizing I/O patterns and representing them compactly.

PLFS (Parallel Log-structured File System) accelerates checkpointing significantly, but its internal metadata may grow too big.

0 3 7 14 17 21 28 31 35 42 46 50 54 58 %	
3473473474444	Pattern Stack
3473473474444	[3]
3473473474444	······[3][4]
3473473474444	[3][4][7]
3473473474444	[(3,4,7)^2]
3473473474444	[(3,4,7)^3]
3473473474444	[(3,4,7)^3],[4]
3473473474444	[(3,4,7)^3],[(4)^2]
34/34/34/4444	[(3,4,7)^3],[(4)^4]
Search window	•
Look ahead window	[0,(3,4,7)^3], [42,(4)^4]

How to recognize I/O patterns and reduce PLFS metadata size.

Metadata size is reduced significantly and R/W performance is improved.

Motivation

Checkpointing is the storage driver in supercomputers. PLFS can improve checkpointing significantly.

Up to several orders of magnitude improvement.

PLFS transparently transforms N-1 write to N-N write.

Applications' I/O has patterns and they can be represented compactly.

Pattern of LANL anonymous 3. Colors indicate ranks.

Metadata of LANL anonymous 3 is big.

Related Work

Coarse-granularity patterns are not precise enough. Statistics methods are lossy.

- 1. (DARSHAN) P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and R. Ross, "Understanding and improving computational science storage access through continuous characterization," ACM Transactions on Storage (TOS), vol. 7, no. 3, p. 8, 2011.
- 2. B. Pasquale and G. Polyzos, "A static analysis of i/o characteristics of scientific applications in a production workload," in Proceedings of the 1993 ACM/IEEE conference on Supercomputing. ACM, 1993, pp. 388–397.
- 3. E. Smirni and D. Reed, "Lessons from characterizing the input/output behavior of parallel scientific applications," Performance Evaluation, vol. 33, no. 1, pp. 27–44, 1998.
- 4. S. Byna, Y. Chen, X. Sun, R. Thakur, and W. Gropp, "Parallel I/O prefetching using MPI file caching and I/O signatures," in Proceedings of the 2008 ACM/IEEE conference on Supercomputing. IEEE Press, 2008, p. 44.
- 5. J. He, H. Song, X. Sun, Y. Yin, and R. Thakur, "Pattern-aware file reorganization in mpi-io," in Proceedings of the sixth workshop on Parallel Data Storage. ACM, 2011, pp. 43–48.
- 6. T. Madhyastha and D. Reed, "Learning to classify parallel input/output access patterns," Parallel and Distributed Systems, IEEE Transactions on, vol. 13, no. 8, pp. 802–813, 2002.
- 7. J. Oly and D. Reed, "Markov model prediction of i/o requests for scientific applications," in Proceedings of the 16th international conference on Supercomputing. ACM, 2002, pp. 147–155.
- 8. N. Tran and D. Reed, "Automatic time series modeling for adaptive i/o prefetching," Parallel and Distributed Systems, IEEE Transactions on, vol. 15, no. 4, pp. 362–377, 2004.

Methods

Sliding window algorithm is effective in discovering pattern.

Results

Patterns of real applications are explored, as well as benchmarks.

Applications explored:

- LIVE RUN:
 - Pagoda (PNNL), MPI-Blast, MILC, Montage (NASA), ADIOS (ORNL), MADBench2 (LBL)
- TRACE REPLAY:
 - Alegra (SNL), S3D (SNL), LANL anonymous applications, FLASH, BTIO

Benchmarks explored :

• PATTERN-IO (NERSC), MPI-TILE-IO (ANL), FS-TEST (LANL)

Example: write patterns of MILC (physics app). In-memory index compression rates by Pattern PLFS (higher is better): (A):37.0; (B):3.0;(C):3.6

Write Performance Improvement

512 processes with write size of 4K.

Read Performance Improvement

Uniform read: 512 processes Non-uniform read: 256 processes

PLFS metadata can be reduced by up to several orders of magnitude.

Conclusions & Future Work

The proposed sliding window algorithm is effective on discovering structure and improving I/O performance.

Application patterns are studied.

I/O structure discovering algorithm and a

compact structure representation are proposed.

Metadata is reduced and I/O performance is improved.

The proposed techniques have the potential for being applied in other systems.

Acknowledgement

- Michael Lang (Los Alamos National Laboratory)
- Adam Manzanares (California State University)
- All the reviewers

This work was performed at the Ultrascale Systems Research Center (USRC) at Los Alamos National Laboratory, supported by the U.S. Department of Energy DE-FC02-06ER25750. The publication has been assigned the LANL identifier LA-UR-12-25954.

Jun's email: junnhe@gmail.com