
Jun He1,2, John Bent3, Aaron Torres4,
Gary Grider4, Garth Gibson5,
Carlos Maltzahn6, Xian-He Sun1

1Illinois Institute of Technology
2New Mexico Consortium
3EMC
4Los Alamos National Laboratory
5Carnegie Mellon University
6University of California Santa Cruz

November 12, 2012

Discovering Structure in Unstructured I/O

Outline

3

PLFS (Parallel Log-structured File System) accelerates
checkpointing significantly, but its internal
metadata may grow too big.

How to recognize I/O patterns
and reduce PLFS metadata size.

Metadata size is reduced significantly
and R/W performance is improved.

This presentation focuses on recognizing I/O patterns and
representing them compactly.

Metadata Compression

BTIO.16PE
FLASH.16PE
FLASH.32PE
FLASH.64PE
FLASH.8PE
LANL_App1.64PE
LANL_App2.App_IO_Library
LANL_App2.MPI-IO_Collective
LANL_App2.MPI-IO_Independent
LANL_App3.64PE
PatternIO.16PE
PatternIO.4PE
PatternIO.64PE
Pagoda

1 2 4 6 8 10 50 100 500 1000

Motivation

5

Up to several orders
of magnitude
improvement.

Checkpointing is the storage driver in supercomputers.
PLFS can improve checkpointing significantly.

PLFS transparently transforms N-1
write to N-N write.

6

PLFS internal metadata may grow very big.

Logical
Offset Length Physical

Offset
Chunk
ID

0 2 0 0
3 2 2 0
7 4 4 0
14 2 8 0
17 2 10 0
21 4 12 0
28 2 16 0
31 2 18 0
35 4 20 0
42 3 24 0
46 3 27 0
50 3 30 0
54 3 33 0
58 3 36 0

Logical
Offset Length Physical

Offset
Chunk
ID

PLFS Reorganization
Physical File 0 Physical File 1

Proc 0 Proc 1 Hole

Index.1
(metadata)

Keep
writing

Keep
writing

Index.0
(metadata)

Logical view

11 3 3 1
16 1 6 1
19 2 7 1
25 3 9 1
30 1 12 1
33 2 13 1
39 3 15 1

2 1 0 1
5 2 1 1

Explode

7

Pattern of LANL anonymous 3.
Colors indicate ranks.

Applications’ I/O has patterns and they can be represented
compactly.

Replicated
metadata (each

reader has a copy)

File size

Metadata
on Disks

After pattern compression,
replicated metadata

Metadata of LANL anonymous 3 is big.

Related Work

10

1. (DARSHAN) P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and R. Ross, “Understanding and
improving computational science storage access through continuous characterization,” ACM Transactions on Storage
(TOS), vol. 7, no. 3, p. 8, 2011.

2. B. Pasquale and G. Polyzos, “A static analysis of i/o characteristics of scientific applications in a production workload,”
in Proceedings of the 1993 ACM/IEEE conference on Supercomputing. ACM, 1993, pp. 388–397.

3. E. Smirni and D. Reed, “Lessons from characterizing the input/output behavior of parallel scientific applications,”
Performance Evaluation, vol. 33, no. 1, pp. 27–44, 1998.

4. S. Byna, Y. Chen, X. Sun, R. Thakur, and W. Gropp, “Parallel I/O prefetching using MPI file caching and I/O
signatures,” in Proceedings of the 2008 ACM/IEEE conference on Supercomputing. IEEE Press, 2008, p. 44.

5. J. He, H. Song, X. Sun, Y. Yin, and R. Thakur, “Pattern-aware file reorganization in mpi-io,” in Proceedings of the
sixth workshop on Parallel Data Storage. ACM, 2011, pp. 43–48.

6. T. Madhyastha and D. Reed, “Learning to classify parallel input/output access patterns,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 13, no. 8, pp. 802–813, 2002.

7. J. Oly and D. Reed, “Markov model prediction of i/o requests for scientific applications,” in Proceedings of the 16th
international conference on Supercomputing. ACM, 2002, pp. 147–155.

8. N. Tran and D. Reed, “Automatic time series modeling for adaptive i/o prefetching,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 15, no. 4, pp. 362–377, 2004.

Coarse-granularity patterns are not precise enough.
Statistics methods are lossy.

From 1. Thanks to Phil Carns. From 7.

Methods

12

Sliding window algorithm is effective in discovering
pattern.

Complexity: O(wn). w is window size. n is input length.

0 3 7 14 17 21 28 31 35 42 46 50 54 58

Logical file:

stride list:

Logical offsets:

3 4 7 3 4 7 3 4 7 4 4 4 4

Results

Example: write patterns of MILC (physics app).
In-memory index compression rates by Pattern PLFS (higher is better):

(A):37.0; (B):3.0;(C):3.6

14

Patterns of real applications are explored, as well as
benchmarks.

Applications explored:
• LIVE RUN:

• Pagoda (PNNL), MPI-Blast, MILC, Montage (NASA), ADIOS (ORNL),
MADBench2 (LBL)

• TRACE REPLAY:
• Alegra (SNL), S3D (SNL), LANL anonymous applications, FLASH, BTIO

Benchmarks explored :
• PATTERN-IO (NERSC), MPI-TILE-IO (ANL), FS-TEST (LANL)

15 512 processes with write size of 4K.

Write Performance Improvement

0

2

4

6

16 64 256

Number of Writes (K)

Pattern PLFS

PLFS 2.2.1

(A):Open Time (sec)

0

2000

4000

16 64 256

Number of Writes (K)

(B):Bandwidth (MB/s)

0

10

20

30

16 64 256

Number of W

(C):Close T

1.5GB/s

Index Memory Footprint

Number of Originating Writes (

Fo
ot

pr
in

t P
er

0

2

4

6

16 64 256

Pattern.PLFS
PLFS.2.2.1

106

Unchanged Unchanged

16

Uniform read: 512 processes
Non-uniform read: 256 processes

Read Performance Improvement

0

40

80

16 64 256

Number of Originating Writes (K)

O
pe

n
Ti

m
e

Pattern PLFS

PLFS 2.2.1

(A):Uniform Read

0

1000

2000

16 64 256

Number of Origina

B
an

dw
id

th
(M

(B):Uniform Re

0

40

80

16 64 256

Number of Originating Writes (K)

O
pe

n
Ti

m
e

(s
ec

)

(C):Non-uniform Read

0

1000

2000

16 64 256

Number of Origina

B
an

dw
id

th
 (M

B
/s

)

(D):Non-uniform

480%

17

PLFS metadata can be reduced by up to several orders of
magnitude.

Metadata Compression

BTIO.16PE
FLASH.16PE
FLASH.32PE
FLASH.64PE
FLASH.8PE
LANL_App1.64PE
LANL_App2.App_IO_Library
LANL_App2.MPI-IO_Collective
LANL_App2.MPI-IO_Independent
LANL_App3.64PE
PatternIO.16PE
PatternIO.4PE
PatternIO.64PE
Pagoda

1 2 4 6 8 10 50 100 500 1000

1500

Conclusions & Future Work

19

The proposed sliding window algorithm is effective on
discovering structure and improving I/O performance.

Application patterns are studied.

I/O structure discovering algorithm and a
compact structure representation are proposed.

0

40

80

16 64 256

Number of Originating Writes (K)

O
pe

n
Ti

m
e

Pattern PLFS

PLFS 2.2.1

(A):Uniform Read

0

1000

2000

16 64 256

Number of Origina

B
an

dw
id

th
(

(B):Uniform Re

0

40

80

16 64 256

Number of Originating Writes (K)

O
pe

n
Ti

m
e

(s
ec

)

(C):Non-uniform Read

0

1000

2000

16 64 256

Number of Origina

B
an

dw
id

th
 (M

B
/s

)

(D):Non-uniform
Metadata is reduced and
I/O performance is improved.

20

The proposed techniques have the potential for being
applied in other systems.

Pre-fetching
Block pre-allocation
Data layout optimization
SciHadoop metadata compression

Predictability & Compactness

21

Acknowledgement

• Michael Lang (Los Alamos National Laboratory)
• Adam Manzanares (California State University)
• All the reviewers

This work was performed at the Ultrascale Systems Research Center
(USRC) at Los Alamos National Laboratory, supported by the U.S.
Department of Energy DE-FC02-06ER25750. The publication has been
assigned the LANL identifier LA-UR-12-25954.

Q & A

Jun’s email:
junnhe@gmail.com

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Patterns of real applications are explored, as well as benchmarks.
	Slide Number 15
	Slide Number 16
	PLFS metadata can be reduced by up to several orders of magnitude.
	Slide Number 18
	The proposed sliding window algorithm is effective on discovering structure and improving I/O performance.
	The proposed techniques have the potential for being applied in other systems.
	Acknowledgement
	Slide Number 22

