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PLFS (Parallel Log-structured File System) accelerates 
checkpointing significantly, but its internal 
metadata may grow too big. 

How to recognize I/O patterns  
and reduce PLFS metadata size. 

Metadata size is reduced significantly 
and R/W performance is improved. 

This presentation focuses on recognizing I/O patterns and 
representing them compactly. 
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Motivation 
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Up to several orders 
of magnitude 
improvement. 

Checkpointing is the storage driver in supercomputers.  
PLFS can improve checkpointing significantly. 

PLFS transparently transforms N-1 
write to N-N write. 
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PLFS internal metadata may grow very big. 

Logical 
Offset Length Physical 

Offset 
Chunk 
ID 

0 2 0 0 
3 2 2 0 
7 4 4 0 
14 2 8 0 
17 2 10 0 
21 4 12 0 
28 2 16 0 
31 2 18 0 
35 4 20 0 
42 3 24 0 
46 3 27 0 
50 3 30 0 
54 3 33 0 
58 3 36 0 

Logical 
Offset Length Physical 

Offset 
Chunk 
ID 

PLFS Reorganization 
Physical File 0 Physical File 1 

Proc 0 Proc 1 Hole 

Index.1 
(metadata) 

Keep 
writing 

Keep 
writing 

Index.0 
(metadata) 

Logical view 

11 3 3 1 
16 1 6 1 
19 2 7 1 
25 3 9 1 
30 1 12 1 
33 2 13 1 
39 3 15 1 

2 1 0 1 
5 2 1 1 

Explode 
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Pattern of LANL anonymous 3.  
Colors indicate ranks. 

Applications’ I/O has patterns and they can be represented 
compactly. 



Replicated 
metadata (each 

reader has a copy) 

File size 

Metadata  
on Disks 

After pattern compression, 
replicated metadata  

Metadata of LANL anonymous 3 is big. 
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Coarse-granularity patterns are not precise enough. 
Statistics methods are lossy. 

From 1.  Thanks to Phil Carns.  From 7.  



Methods 
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Sliding window algorithm is effective in discovering 
pattern. 

Complexity: O(wn). w is window size. n is input length. 

0 3 7 14 17 21 28 31 35 42 46 50 54 58 

Logical file: 

stride list: 

Logical offsets: 

3 4 7 3 4 7 3 4 7 4 4 4 4 



Results 



Example: write patterns of MILC (physics app).  
In-memory index compression rates by Pattern PLFS (higher is better):  

(A):37.0; (B):3.0;(C):3.6 
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Patterns of real applications are explored, as well as 
benchmarks. 

Applications explored: 
• LIVE RUN:  

• Pagoda (PNNL), MPI-Blast, MILC, Montage (NASA), ADIOS (ORNL), 
MADBench2 (LBL) 

• TRACE REPLAY: 
• Alegra (SNL), S3D (SNL), LANL anonymous applications, FLASH, BTIO 

 
Benchmarks explored : 
• PATTERN-IO (NERSC), MPI-TILE-IO (ANL), FS-TEST (LANL) 
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Write Performance Improvement 
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Uniform read: 512 processes 
Non-uniform read: 256 processes 

Read Performance Improvement 
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PLFS metadata can be reduced by up to several orders of 
magnitude. 

Metadata Compression
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Conclusions & Future Work 
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The proposed sliding window algorithm is effective on 
discovering structure and improving I/O performance. 

Application patterns are studied. 

I/O structure discovering algorithm and a 
compact structure representation are proposed.  
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Metadata is reduced and  
I/O performance is improved. 
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The proposed techniques have the potential for being 
applied in other systems. 

Pre-fetching 
Block pre-allocation 
Data layout optimization 
SciHadoop metadata compression 

Predictability & Compactness  
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