JG|U

sjonannes GUTENBERG
UNIVERSITAT MAINZ

Towards Dynamic Scripted
PNFS Layouts

Matthias Grawinkel, Tim Suf3, Gregor Best,

lvan Popov, André Brinkmann

Motivation

e Massive amounts of data
e Huge variety in:
— Storage system architectures
— Storage media (Ram / Flash / Disk / ... + RAID)
— Storage protocols
— Application’s access patterns / requirements

e Mismatch of access pattern and storage system can have severe
impact on performance!

e |deas to improve this situation:
— Shift some responsibility to clients
— Extend application’s hints on resource usage

— Use reconfigurable, script based file layout descriptors

PDSW 2012 - Matthias Grawinkel 3

NFSv4.1 / pNFS

pPNFS Clients

Block /
Object /
File

control

metadata

Data Servers (DS)
Metadata server (MDS)

e NFSv4.1 extension for parallel and direct data access
e Namespace and metadata operations on MDS

e Direct data path to data servers (Block, Object, File layouts)

PDSW 2012 - Matthias Grawinkel

Data Access

e In pNFS the file‘s content is organized in a layout
e QOrganized by MDS, client calls GETLAYOUT for a file handle

e Layout contains:
— Locations

e Map of files, volumes, blocks that make up the file

— Parameters

e jomode (R/RW), range, striping information, access rights, ...

e Current layouts define fixed algorithms to calculate target resources

for logical file‘s offsets.

Object Layout

O wm>
_ N =

File
Client iomode = RW
range = 0 - 42000
block size = 64kB
algorithm = RAID5

%%
— 500,

Object Stores

PDSW 2012 - Matthias Grawinkel

Layout Semantics

e MDS knows who holds which layouts
e Conflicting layouts are prevented by MDS

— Ask client to return layouts

Client MDS D—.S D—.S

— Calls back invalidated layouts ; ; T
e Layout is valid for full file or a range E<OPEN + GETATTR N: o
e QOverlapping read-layouts possible | LAYOUTGET ! i i
< > i i
e RW-layout is exclusive for a range : ! | |
) ! READ/WRITE ! : :
* RW-layout’s content can be updated —ooE : >
(LAYOUTCOMMIT) : > o
' LAYOUTCOMMIT + | |

e Layouts have to be returned |_LAYOUTRETURN !

to the MDS (LAYOUTRETURN)

PDSW 2012 - Matthias Grawinkel 6

Layout Hints

e How does the MDS create layouts?

— open (...,0_CREATE, ..., layout_hint, ...)
e Application can provide a layout_hint on file creation
e Goal: Applications can express their requirements

e We argue for more verbose hints
e Introduce storage classes

— Characterized by metrics: Throughput, latency, reliability, ...

e Gold, Silver, Bronze?

— Application can send a wish list for storage resources

e |.e.2 x Gold on two servers for RAID1,
10 x Silver on ten servers for RAID6

e Application provides algorithm to interpret layout
- E.g. map some file regions to Gold, others to Silver

PDSW 2012 - Matthias Grawinkel

Scripted Layouts

e Introduce scripting engine to pNFS stack

e Layout uses script instead of fixed algorithm

— Flexible placement strategies
e RAID 0/1/4/5/6, Share, CRUSH, Clusterfile, ...

— Flexible mapping to storage classes

e Application can:
— Provide own layout script
— Reconfigure storage driver
— Update layout script, parameters (LAYOUTCOMMIT)
— Move storage resources between layouts

PDSW 2012 - Matthias Grawinkel 8

Scripting Engine

e |Lua

- Very fast scripting language

- Embeddable with bindings for C/C++
e [n-kernel scripting engine - lunatik-ng [1]

Stateful: Can hold functions, tables, variables

Callable from kernel code

Syscall for applications

e Administrators / Applications can get/set (global) variables and functions

Extendable by bindings

e kernel crypto API
e pNFS

[1] http://github.com/lunatik-ng/lunatik-ng

IG|u

PDSW 2012 - Matthias Grawinkel 9

Scripted Layout Driver

e Meta layout driver that uses existing drivers
- On data access, the layout’s script is evaluated
- Existing drivers can be reused

Client

pNFS
Client

Scripted
Layout Driver

I
File/OSD/

Block Layout |<
Driver

VFS <= MDS

lunatik-ng

DS

PDSW 2012 - Matthias Grawinkel 10

Examples

e NetCDF, HDF5 like data structures can be spread to multiple
locations that match the files internal structure and access patterns

Metadata tmp Bulk Data
- =
Flash Ram
Disks

— Application can adapt on file regions, algorithms, mappings, ...

e Pseudo randomized data placement strategies

— Layout contains (link to) list of storage resources and a script to
calculate the actual targets

PDSW 2012 - Matthias Grawinkel 11

Evaluation

e No implementation of scripted layout driver (yet)
e |unatik-ng scripting engine

— With bindings for pNFS kernel objects, crypto API
e Performance tests for relevant scripts

e Tests conducted on
— Linux Kernel 3.6 - git://linux-nfs.org/~bhalevy/linux-pnfs.git

e pnfs-all-latest branch
— lunatik-ng — http://github.com/lunatik-ng/lunatik-ng
— Intel(R) Xeon(R) CPU E3-1230 V2 @ 3.30GHz with 16 GB Ram

PDSW 2012 - Matthias Grawinkel 12

Results

e Calculate stripe unit index from file_layout: 0.87us / call (+0.03)
e Creating a new file_layout object: 2.18us / call (0.05)

function lua create filelayout (buf)
rv = pnfs.new filelayout()
rv.stripe type = "sparse"
rv.stripe unit = buf[l] + buf[3]
rv.pattern offset = buf[2] + buf[4]
rv.first stripe index = buf[5] + buf[6]
return rv

end

e Calling kernel.crypto.shal(20 bytes): 1.25us / call (+0.02)
e Creating new file_layout with shal() calculation: 3.25us / call (+0.02)

IG|u

PDSW 2012 - Matthias Grawinkel 13

Conclusion

e It would work!

Proposed hints and script based layouts
are compatible with pNFS protocol

Scripting capabilities look promising

e (Opens up:

New possibilities for optimizations, self-adapting applications

Field for experimentation on placement strategies

e Problems:

PDSW 2012 -

Usage scenarios? Who will provide the scripts?
User / Developer / Admin?

Scripts are dangerous! “while(true) {}” - signed building blocks?
MDS looses control / consistent view on files
Performance overhead of “static” scripts vs code

The killer app?

Matthias Grawinkel 14

Question

‘“

grawinkel@uni-mainz.de

mailto:grawinkel@uni-mainz.de
mailto:grawinkel@uni-mainz.de

