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Situation of this work

Techniques for Application Coordination while Accessing Data

Where:

= Datais data stored on a storage system
— Typically shared storage
— Mainly targeting High-Performance Computing

= Applications cannot easily coordinate among
themselves

= Access can be reading or writing (update)

Examples: Loosely coupled calculations, GUPS-workloads, parallel histogram ,
unaligned access in block based systems
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The Issue:
Concurrent Updates to Shared Storage

C1l C2 = Client wants to increment counter.
— No “increment” in storage, so performs
read followed by write.
read _1_

Bt > = Multiple clients execute concurrently
\.Lﬁ_d\) — Certain execution schedules will lead to
<1 lost updates or incorrect results.
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Motivating Example:
Parallel Histogram Calculation

We want to learn more about the distribution of a certain property in a data set.

For each entry (E) in the data set,
classify to a bin:

binnum = classify (E)

e Update bin binnum:

1. oldcontent = read (bin)
2. newcontent = update (content, E)
3. write (bin, newcontent)

Bins
Updates to the same bin need to be
synchronized!
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A Solution: Distributed Locking
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Algorithm:

A lock server holds lock for each
shared entity.

Before accessing data, the lock needs
to be obtained.

Other lock requests will be delayed
until the lock is released.

Lock is released after update.

Disadvantages:

Lock server holds state;
What if client fails while holding lock?

Extra lock servers/infrastructure

Pessimistic: Always extra cost, even if
no locking would have been needed.

Lock granularity?



A (Better?) Solution: Optimistic Coordination

attempt-2

attempt-1

[storage }{1]

C 1 attempt-1

read
|.‘-‘
WC(1,2)
WO

Instead of write: Write-Conditional (expvalue, newvalue)
Read current value, and only write newvalue if current value equal to expvalue

Atomic operation; Write and write-conditional to same location are serialized

Optimistic: Expect no problems (conflicting access)

— Repeat algorithm if assumption was incorrect
No state on server; OK if client disappears or otherwise misbehaves
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The A-B-A Issue: “value is the same” vs “update”

The comparison cannot detect if the data was
updated; it can only detect if it is different from what
the client is expecting (previous value read).

Example:

= (1 reads the current value and finds ‘A’.
m  (C2reads the current value and finds ‘A’.

= They both want to update to ‘B’ and proceed.

— (C2 goes first, succeeds in updating to ‘B’ but
performs another update reverting back to ‘A’.

— (1 performs update changing to ‘B’.

C1 cannot assume that the storage did not change!

= Only that contents are the same as when it last
checked.

= Problematic: for example if storing references
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A Solution for the A-B-A Problem

Solution is to track change independent

l from content.

A, V1 = Add version field which will be used
GET GET for comparison.
A, vl A, vl (No longer comparing data!)

= Read and write include version in

WC(v1l,v2,B) "
Al addition to data.
oK =  Advant
vantages:
B, v2 |
GET — Solves A-B-Aissue
B, v2 — Comparing version can be quicker,
(comparison and transfer) especially
WC(v2,v3,A) for large accesses
» 0K = Disadvantages:
A’ V3 — Multiple attempts needed; Fairness
WC(v1,v2,B) Implementation details:
FAIL + = Byte? Block? Extent?

=  Multiple versions?
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Updates in Replicated Storage
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Block Device,
T10 OSD,
or Local FS
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How to handle replicated storage?

= Conditional write could succeed
multiple times with different
outcome and lead to non-
deterministic result!

Solution:

= Force all updates to go through a
single ‘master’ server

Condition check only performed
once

Natural serialization point

Master server can be different for
different objects.
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Evaluation: Experiment Setup

= |mplementation builds on earlier work: Transactional Object Storage Device [1]
— Added version-based conditional operators
— Byte-granularity atomicity

— Extent based version tracking. - :
— N
= Using Fusion cluster at Argonne National Laboratory (g —
— Used ramdisk for storage O m—
— Node: 2x Intel Nehalem 2.6Ghz, 36GB ram, 16 cores total O m—
— Communication: mpich 1.2.1 »

= Comparing lock-based coordination against version-based conditionals in
performing histogram update workload
— ZooKeeper is used for locking; Single lock server, unique lock for each bin.
— Run experiment for at least 60 seconds, at least 5 runs.
— Each bin is 4K in size, variable number of bins, variable number of clients.
— Input data considered random, so simply picking random bin number.

[1] P. Carns, R. Ross and S. Lang “Object Storage Semantics for Replicated Concurrent-Writer File Systems” (IASDS 2010).
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Effect of Conflicts: Sensitivity Analysis

16 Concurrent Operations, Single Client, Variable nhumber of bins
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Scalability

264 bins, (almost) no conflicts
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Scalability
512 bins, Conflicts likely

(a) Operation rate (b) percentage of successful writes
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Conflict Rate Analysis

Self-Reinforcing Effect: 512 bins, 32 servers
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Conclusions

Studied Optimistic Coordination in the context of High-Performance Computing
Storage Systems.

Evaluated by comparing to traditional, distributed locking (pessimistic) approach.

— Found nearly linear scaling up to 512 concurrent operations provided there is little
contention.

e For high-contention scenario’s, some form of throttling is needed. (topic of future work)

— Optimistic locking outperformed traditional locking by a wide margin.

Future work:

— Explore back-off algorithms to reduce contention: both server and client initiated.

— Investigate the use of optimistic locking in other common file system workloads
e Distributed data structures in scientific data analysis
e Consistency in namespaces (for example directories)
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Thank you for your attention!

Questions?
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