Argonne°

NATIONAL LABORATORY

A Case for Optimistic Coordination
in HPC Storage Systems

Philip Carns, Kevin Harms, Dries Kimpe, Justin M. Wozniak,
Robert Ross, Lee Ward, Matthew Curry, Ruth Klundt,
Geoff Danielson, Cengiz Karakoyunlu, John Chandy,
Bradley Settlemeyer, William Gropp

Overview

= |ntroduction
— Situation

= Problem Description
— Driver Application
— Existing approach

= Proposed solution

— Optimistic Coordination
— The A-B-A Problem

= Evaluation

Conclusions & Future Work

Kimpe et al. @ PDSW 2012, Salt Lake City, UT

Situation of this work

Techniques for Application Coordination while Accessing Data

Where:

= Datais data stored on a storage system
— Typically shared storage
— Mainly targeting High-Performance Computing

= Applications cannot easily coordinate among
themselves

= Access can be reading or writing (update)

Examples: Loosely coupled calculations, GUPS-workloads, parallel histogram ,
unaligned access in block based systems

Kimpe et al. @ PDSW 2012, Salt Lake City, UT

Y

The Issue:
Concurrent Updates to Shared Storage

C1l C2 = Client wants to increment counter.
— No “increment” in storage, so performs
read followed by write.
read _1_

Bt > = Multiple clients execute concurrently
\.Lﬁ_d\) — Certain execution schedules will lead to
<1 lost updates or incorrect results.

write '2'
oK Sl il ~
S
A it | s
U \
’ \
| 2 JAll Update from C1 lost!
o \\ ¢ oK R4
£ \“~~ £,¢'
\ Yy

Kimpe et al. @ PDSW 2012, Salt Lake City, UT

Motivating Example:
Parallel Histogram Calculation

We want to learn more about the distribution of a certain property in a data set.

For each entry (E) in the data set,
classify to a bin:

binnum = classify (E)

e Update bin binnum:

1. oldcontent = read (bin)
2. newcontent = update (content, E)
3. write (bin, newcontent)

Bins
Updates to the same bin need to be
synchronized!

Kimpe et al. @ PDSW 2012, Salt Lake City, UT

Y

A Solution: Distributed Locking

>
o
)]
A4
O
O
request lock
o
lock granted 1
req. lock >
= read — -
< Wwrite
.......... unlock
- 2
|(-"g'i§h'féd
B—
<—
Write >
""" URTocKk > 3
()]
£
Y Y Y Y

Kimpe et al. @ PDSW 2012, Salt Lake City, UT

Algorithm:

A lock server holds lock for each
shared entity.

Before accessing data, the lock needs
to be obtained.

Other lock requests will be delayed
until the lock is released.

Lock is released after update.

Disadvantages:

Lock server holds state;
What if client fails while holding lock?

Extra lock servers/infrastructure

Pessimistic: Always extra cost, even if
no locking would have been needed.

Lock granularity?

A (Better?) Solution: Optimistic Coordination

attempt-2

attempt-1

[storage }{1]

C 1 attempt-1

read
|.‘-‘
WC(1,2)
WO

Instead of write: Write-Conditional (expvalue, newvalue)
Read current value, and only write newvalue if current value equal to expvalue

Atomic operation; Write and write-conditional to same location are serialized

Optimistic: Expect no problems (conflicting access)

— Repeat algorithm if assumption was incorrect
No state on server; OK if client disappears or otherwise misbehaves

Kimpe et al. @ PDSW 2012, Salt Lake City, UT

The A-B-A Issue: “value is the same” vs “update”

The comparison cannot detect if the data was
updated; it can only detect if it is different from what
the client is expecting (previous value read).

Example:

= (1 reads the current value and finds ‘A’.
m (C2reads the current value and finds ‘A’.

= They both want to update to ‘B’ and proceed.

— (C2 goes first, succeeds in updating to ‘B’ but
performs another update reverting back to ‘A’.

— (1 performs update changing to ‘B’.

C1 cannot assume that the storage did not change!

= Only that contents are the same as when it last
checked.

= Problematic: for example if storing references

Kimpe et al. @ PDSW 2012, Salt Lake City, UT

A Solution for the A-B-A Problem

Solution is to track change independent

l from content.

A, V1 = Add version field which will be used
GET GET for comparison.
A, vl A, vl (No longer comparing data!)

= Read and write include version in

WC(v1l,v2,B) "
Al addition to data.
oK = Advant
vantages:
B, v2 |
GET — Solves A-B-Aissue
B, v2 — Comparing version can be quicker,
(comparison and transfer) especially
WC(v2,v3,A) for large accesses
» 0K = Disadvantages:
A’ V3 — Multiple attempts needed; Fairness
WC(v1,v2,B) Implementation details:
FAIL + = Byte? Block? Extent?

= Multiple versions?

Kimpe et al. @ PDSW 2012, Salt Lake City, UT

o 9

Updates in Replicated Storage

Client

Client

Client

Client

Client

Conditional
Write

File system

network protocols

Network
\Abstractlon)

~ N
Conditonal
Check
o

o\ (

R N
ject Storage

bstraction
__

>

Network
Abstraction

Forwarded Write

Object Storage
Abstraction

Network
Abstraction

Object Storage
Abstraction

Block Device,
T10 OSD,
or Local FS

Block Device,
T10 OSD,
or Local FS

Kimpe et al. @ PDSW 2012, Salt Lake City, UT

v

Block Device,
T10 OSD,
or Local FS

<...-.-.-...-..|

How to handle replicated storage?

= Conditional write could succeed
multiple times with different
outcome and lead to non-
deterministic result!

Solution:

= Force all updates to go through a
single ‘master’ server

Condition check only performed
once

Natural serialization point

Master server can be different for
different objects.

10

Evaluation: Experiment Setup

= |mplementation builds on earlier work: Transactional Object Storage Device [1]
— Added version-based conditional operators
— Byte-granularity atomicity

— Extent based version tracking. - :
— N
= Using Fusion cluster at Argonne National Laboratory (g —
— Used ramdisk for storage O m—
— Node: 2x Intel Nehalem 2.6Ghz, 36GB ram, 16 cores total O m—
— Communication: mpich 1.2.1 »

= Comparing lock-based coordination against version-based conditionals in
performing histogram update workload
— ZooKeeper is used for locking; Single lock server, unique lock for each bin.
— Run experiment for at least 60 seconds, at least 5 runs.
— Each bin is 4K in size, variable number of bins, variable number of clients.
— Input data considered random, so simply picking random bin number.

[1] P. Carns, R. Ross and S. Lang “Object Storage Semantics for Replicated Concurrent-Writer File Systems” (IASDS 2010).

Kimpe et al. @ PDSW 2012, Salt Lake City, UT
11

Effect of Conflicts: Sensitivity Analysis

16 Concurrent Operations, Single Client, Variable nhumber of bins

100 3500

90
3000 f .

80

20 | 2500

60
2000

50

1500
40

30 1 1000

20

| 500
10 | ;

Average Success Rate (%) Average Ops/s
O 1 1 | 1 | 1 0 | | 1 | 1 1
Bin Count Bin Count

Kimpe et al. @ PDSW 2012, Salt Lake City, UT

; 12

Scalability

264 bins, (almost) no conflicts

80000
70000
O
[
3
8 60000
@
o
2 50000
S
©
2
S 40000
o
%; 30000
2
S
S 20000
(]
(O]
o
10000

conditional updates
locked updates

avg: 491.7

_xavg: 216.6 K

7

&

avg: 522.1 avg: 543.2 avg: 539.0
%—
“ N2 S

Number of client nodes (16x concurrency per client)

Kimpe et al. @ PDSW 2012, Salt Lake City, UT

Y

13

Scalability
512 bins, Conflicts likely

(a) Operation rate (b) percentage of successful writes
40000 — w
avg. conditional —
avg. locked —/z - \\
s 35000 | 1
5
S ' '
» 30000 [| (e
g I 1 =
o i | (=
s 25000 : | @
o S
© | | 3!
g 20000 [I | @
2 I I ©
S 15000 f l '8
= : : 5 Small decrease in success rate
O = 5 5
= 10000 [\ ;) & causes big drop in throughput
IS
& -
5009’- \)
494.4 533.3 519.3 5344 |
A e X
7 @ s <% S 7 @ 76 <% S
Number of client nodes (16x conc‘urrency per client) Number of client nodes (16x concurrency per client)
Kimpe et al. @ PDSW 2012, Salt Lake City, UT Rate not affected by conflicts

14

S for lock-based scheme

Conflict Rate Analysis

Self-Reinforcing Effect: 512 bins, 32 servers

40 | | | | I] | | | I | | I | I | | | | I le “‘I .."'[| | I | | | | I |
X o .
S : .
S 35 Bl All blocks for server
.?) ; H are affected!
© 30]
= : :
5 2 '
c : :
2 s :
5 20T i
c H H
o) : :
o : :
o 15 : : -
2 : :
£ : :
g 10
2}
-
3
> ST
©
E r

O7 LTS E =S8 77,5757 7%67 5% 739’309,;{59&«97@@«3@9)9&@&000,
Server number e

Kimpe et al. @ PDSW 2012, Salt Lake City, UT

o 15

Y

Conclusions

Studied Optimistic Coordination in the context of High-Performance Computing
Storage Systems.

Evaluated by comparing to traditional, distributed locking (pessimistic) approach.

— Found nearly linear scaling up to 512 concurrent operations provided there is little
contention.

e For high-contention scenario’s, some form of throttling is needed. (topic of future work)

— Optimistic locking outperformed traditional locking by a wide margin.

Future work:

— Explore back-off algorithms to reduce contention: both server and client initiated.

— Investigate the use of optimistic locking in other common file system workloads
e Distributed data structures in scientific data analysis
e Consistency in namespaces (for example directories)

Kimpe et al. @ PDSW 2012, Salt Lake City, UT

16

Acknowledgements

= Co-authors & Collaborators
Philip Carns, Kevin Harms, Justin M. Wozniak, Robert Ross: Argonne National Laboratory; Lee Ward,
Matthew Curry, Ruth Klundt, Geoff Danielson: Sandia National Laboratories; Cengiz Karakoyunlu, John
Chandy: University of Connecticut; Bradley Settlemeyer: Oak Ridge National Laboratory; William Gropp:
University of lllinois at Urbana-Champaign

= Sponsor
This material is based on work supported by, or in part by U.S. Department of Energy’s Oak
Ridge National Laboratory and included the Extreme Scale Systems Center, located at ORNL
and funded by the DoD in part by the “Novel Software Storage Architectures” contract. This
work also was supported by U.S. Department of Energy, under contracts DE-ACO02-
06CH11357 and DE-FG02-08ER25835.

= The use of the computing resources provided on “Fusion”, operated by the Laboratory
Computing Resource Center at Argonne National Laboratory.

Thank you for your attention!

Questions?

Kimpe et al. @ PDSW 2012, Salt Lake City, UT

° 17

