
DataMods: Generalizing File System Services
Noah Watkins and Carlos Maltzahn
Systems Research Lab — UC Santa Cruz

Introduction

Scaling Applications
I Arrival of ”Big Data“ is pushing limits of storage systems
I Applications require scalability, and are growing more complex
I Existing interfaces (e.g. POSIX) are a roadblock to scaling

SequenceFile

MapFile

ArrayFileSetFileBloomMapFile

TFile

HFileBCFile RCFile

Byte Stream Interface

Subset of Hadoop Ecosystem

N
et

C
D

F,
 H

D
F5

, F
IT

S

D
B 

(B
Tr

ee
, W

AL
, .

..)

New Interfaces
I Storage systems take years to build and certify
I Scalable, open-source systems are in development now
I It is time to invest in alternative interface without fear of lock-in

Middleware Services

I Applications interact with complex data models
I File systems are used to share and persist application data
I Middleware maps the complex (application) to the simple (byte-stream)

Middleware Functionality

Intelligent
Access

Asynchronous
Service

Metadata
Management

Data
Placement

1. Data types
2. Data model attributes
3. Field descriptions

1. Byte stream layout
2. Physical alignment
3. Placement indexing

1. Object views
2. Active computation
3. Custom interfaces

1. Workflows
2. Compressions
3. Indexing

Storage System Services

Scalable Meta-data Management
I Indexing and file system hierarchy
I Fixed-size inode eliminates block lists

File Services and Operations
I Control over file layout (striping strategy)

Distributed Object Storage
I Local storage, cache, multi-core CPU, RAM
I Object behavior and interface defined by class

Recovery and Fault-tolerance
I Transparent handling of fault-tolerance (scalable shuffling)
I Scrubbing is an asynchronous background task

Data Model Modules

I Middleware duplicates services found in storage systems
I Expose storage system services with convenient abstractions

File Manifold
I Generalization of metadata storage and placement services
I Complex heterogeneous byte streams with custom striping strategy
I Container for complex data organizations

dataset A dataset B dataset C

pattern layout manifold

File Manifold

index

Compound Manifold

append log
pattern layout manifold

Active and Typed Storage
I Advanced interfaces that go beyond binary objects
I Programming model with well-defined performance costs
I Construction of domain-specific interfaces and processing routines

Asynchronous Services
I Middleware perform indexing, compression, and workflows
I Work must be performed online while files are opened
I Many tasks are amenable to offline, asynchronous completion

Use Case: Checkpoint/Restart

Motivation
I Large-scale, long running computations need fault-tolerance
I Periodically checkpoint state to file system
I Many processes write to one file (N-1) or dedicated files (N-N)

Parallel Log-structured File System (Bent:SC09)
I Middleware transforms N-1 workloads into N-N transparently
I Global index is maintained that records every write
I Constructing and compressing the index online has overhead

PLFS File Manifold
I Hierarchical manifold with logical file at top level
I Log-structured files form the lower level

Object Store

pid.obj.0 pid.obj.1 pid.obj.n

...

Log Selection (write) Index Lookup (read)

Striping Strategy (Append) Index Maintenance API

Logical Byte Stream

Per-proc Log-structured File Manifold

append to log

Logical	  top-‐half	  file	  
is	  not	  materialized	  

Routes	  to	  per-‐
process	  log	  file	  

Append	  striping	  
within	  RADOS	  
namespace	  

Index-‐enabled	  
objects	  record	  
logical-‐to-‐phy	  

Interface	  to	  index	  
maintenance	  
rouBnes	  

Use Case: Checkpoint/Restart

Automatic Indexing
I Storage system is able to observe and record all writes
I Low-level objects automatically index and append writes
I Building this object type is trivial, and operation is light-weight
I Data and temporal locality for index and payload I/O

Log Index

new append
free space

append

in
se

rt(
lo

ff,
 p

of
f, 

le
n)

write(loff, len)

free space

view

read(loff, len)

Log Index

Offline Index Compression
I After a checkpoint, the global index is fragmented
I Two forms of compression reduce the size of the index
I Consolidation combines all of the fragments for efficient read I/O

Merge Pattern

Index Compression Pipeline
Raw Index

(logical offset, physical offset, length)
Merge Pattern

Index Compression Pipeline
Raw Index

(logical offset, physical offset, length)
Merge Pattern

Index Compression Pipeline
Raw Index

(logical offset, physical offset, length)
Merge Pattern

Index Compression Pipeline
Raw Index

(logical offset, physical offset, length)

Conslida)on	   Conslidated 
Index 

Compression Performance
I Applied compression techniques to 92 published traces from LANL
I Compression of several orders of magnitude are possible

1	  

10	  

100	  

1000	  

10000	  

100000	  

1000000	  

Fa
ct
or
	  R
ed

uc
,o

n	  
ov
er
	  B
as
el
in
e	  

Data	  Sets	  Ordered	  by	  Reduc,on	  Factor	  

Effect	  of	  Merging	  and	  Pa>ern	  Techniques	  for	  PLFS	  Traces	  
Merging	   Merging+Pa-ern	  Recogni1on	  

Future Work
I Formalizing the DataMods abstraction
I Applying techniques to other domains (e.g. Hadoop, Visualization)

Systems Research Lab — UC Santa Cruz jayhawk@cs.ucsc.edu


