
0

40

80

16 64 256

Number of Originating Writes (K)

O
p

e
n

 T
im

e
 (

s
e

c
)

Pattern PLFS

PLFS 2.2.1

(A):Uniform Read

0

1000

2000

16 64 256

Number of Originating Writes (K)

B
a

n
d

w
id

th
(M

B
/s

)
(B):Uniform Read

0

40

80

16 64 256

Number of Originating Writes (K)

O
p

e
n

 T
im

e
 (

s
e

c
)

(C):Non-uniform Read

0

1000

2000

16 64 256

Number of Originating Writes (K)

B
a

n
d

w
id

th
 (

M
B

/s
)

(D):Non-uniform Read

0

2

4

6

16 64 256

Number of Writes (K)

Pattern PLFS

PLFS 2.2.1

(A):Open Time (sec)

0

2000

4000

16 64 256

Number of Writes (K)

(B):Bandwidth (MB/s)

0

10

20

30

16 64 256

Number of Writes (K)

(C):Close Time (sec)

Discovering Structure in Unstructured I/O
Jun He1,2, John Bent3, Aaron Torres4, Gary Grider4, Garth Gibson5, Carlos Maltzahn6, Xian-He Sun1

1Illinois Institute of Technology, 2New Mexico Consortium, 3EMC, 4Los Alamos National Laboratory,

5Carnegie Mellon University, 6University of California Santa Cruz

Motivation Discovering Pattern Structure
Merging Isolated Patterns into a

Global One

Conclusions

Acknowledgement

Extremely challenging storage requirements for

exaflop supercomputers:

Checkpoints of 32 petabytes in size should

complete in 300 seconds (DOE projection)

PLFS (Parallel Log-structured File System)

reduces checkpoint time by up to several orders of

magnitude

By transparently transforming N-1 writes (N

processes write to 1 file) to N-N.

However, PLFS metadata (index) grows as the

application size and number of data writes

increase.

Considerable overhead of meatadata fetching

Considerable memory occupation by metadata

Example: an anonymous application from LANL

Data: 4 GB

PLFS metadata (on disk): 192 MB

PLFS metadata (in memory): 12 GB

The authors are thankful to Michael Lang (LANL) and

Adam Manzanares (California State University) for their

help toward this study. This work was performed at the

Ultrascale Systems Research Center (USRC) at Los Alamos

National Laboratory, supported by the U.S. Department of

Energy DE-FC02-06ER25750. The publication has been

assigned the LANL identifier LA-UR-12-25954.

This paper proposes efficient and practical

techniques to discover structures from unstructured

I/O operations, thereby enabling powerful I/O

optimizations.

Several orders of magnitude improvement in the

size of the PLFS metadata.

Up to 40% of write improvement

Up to 480% of read improvement

Other Possible Use Cases:

Pre-fetching, block pre-allocation, and index

compression in SciHadoop.

PLFS Index

PLFS transparently transforms shared-file writing

into log-structured file-per-process writing. Index

has a mapping between the bytes within the logical

file and their location within the physical files.

The figure below shows an example of two

processes writing to a traditional PLFS file. Indices

can become very large as the number of writes

increases.

To shrink index size, we discover patterns in index

entries and represent them in a compact way.

For a simplified example, sequence

(8,8,8,8,8,8,8,8,8,8) can be represented as 8^10 (ten

eights). So the size is compressed.

Notation for Complex Patterns

 i is the first element of the original sequence.

 d[] (delta) is the repeating part of an array

containing the distances of any two consecutive

elements in the original sequence.

 r is the number of repetitions.

For example, (5, 7, 10, 12, 15) can be represented as

[5, (2, 3)∧2].

Discovering Pattern
An example to find the logical offset patterns in

index.0 of the previous figure:

New Index.0 using pattern structures:

Time complexity: O(wn).

w: window size

n: length of input sequence

Look Up a Request in a Pattern
1. Assemble all indices at the time of opening

PLFS file for read.

2. Request comes: read(offset=22, len=1).

3. Look up to what position offset=22 falls in the

imaginary pattern matrix. For example,

[0,(3,4,7)^3]

4. find the corresponding 6th length and physical

offset of logical offset 22

5. Calculate and return the corresponding physical

offset and length of the request.

 4,7,6,2 and so on are PIDs.

Blocks of same texture represent data area that is shared by a

group of processes, e.g. global strides.

The writes from different processes in the figure

above can be described by one global pattern:

In order to further compress metadata, isolated per-

process index patterns can be merged into a global

one.

For example, in the figure below, all processes write

with a fixed stride of 10 as shown.

Evaluation

FS-TEST

Write performance of 512 processes with write size of

4K.

Performance of uniform read (512 processes) and

non-uniform read (256 processes) with originating

write size of 4K.

Index Memory Footprint

Number of Originating Writes (K)F
o

o
tp

ri
n

t
P

e
r

P
ro

c
 (

G
B

)

0

2

4

6

16 64 256

Pattern.PLFS
PLFS.2.2.1

MILC

Write patterns of MILC. In-memory index

compression rates by Pattern PLFS (higher is better):

(A):37.0; (B):3.0;(C):3.6

Others

Metadata Compression

BTIO.16PE

FLASH.16PE

FLASH.32PE

FLASH.64PE

FLASH.8PE

LANL_App1.64PE

LANL_App2.App_IO_Library

LANL_App2.MPI-IO_Collective

LANL_App2.MPI-IO_Independent

LANL_App3.64PE

PatternIO.16PE

PatternIO.4PE

PatternIO.64PE

Pagoda

1 2 4 6 810 50 100 500 1000

