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Problem

• Large amount of intermediate data in Hadoop
• Ine�cient key representation
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�Incompressible� bytes

00 00 00 00 00 00 00 00 00 00 00 00 0a 77 69 6e |.............win|

64 73 70 65 65 64 31 00 00 00 01 00 00 00 01 6c |dspeed1........l|

88 6c 80 01 01 1f 0e 00 00 00 04 00 00 00 8c 00 |.l..............|

00 00 00 00 00 00 00 00 00 00 01 0a 77 69 6e 64 |............wind|

73 70 65 65 64 31 00 00 00 01 00 00 00 01 6c 88 |speed1........l.|

6c 8a 01 01 1f 0e 00 00 00 04 00 00 00 8c 00 00 |l...............|

00 00 00 00 00 00 00 00 00 02 0a 77 69 6e 64 73 |...........winds|

70 65 65 64 31 00 00 00 01 00 00 00 01 6c 88 6c |peed1........l.l|

94 01 01 1f 0e 00 00 00 04 00 00 00 8c 00 00 00 |................|

00 00 00 00 00 00 00 00 03 0a 77 69 6e 64 73 70 |..........windsp|

65 65 64 31 00 00 00 01 00 00 00 01 6c 88 6c 9e |eed1........l.l.|

01 01 1f 0e 00 00 00 04 00 00 00 8c 00 00 00 00 |................|

00 00 00 00 00 00 00 04 0a 77 69 6e 64 73 70 65 |.........windspe|

Generic compression methods such as GZIP rely on repeating se-
quences of bytes. A stream of keys generated by walking a grid in
a regular patterns creates almost identical sequences of bytes. The
changing bytes greatly hamper compression by introducing bytes
that must be literally encoded as well as forcing GZIP to use shorter
sequences, rather than using long sequences such as multiples of the
simple sequence.

Sequence detection
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δ; r ≡ increment=δ, run length=r

Highest current r is for stride 4, so prediction uses stride = 4, δ = 1.
In other words, the prediction for byte xi is xi−4 + 1.

Linear prediction

Keys:
(1,1) (1,2) (1,3) (1,4) (1,5)
(2,1) (2,2) (2,3) (2,4) (2,5)

Original: 1 1 1 2 1 3 1 4 1 5 2 1
Predictions: 1 4 1 5 1 6
Delta (output): 1 1 1 2 1 3 0 0 0 0 1 -7

Noticing that the bytes form a linear sequence, we predict them,
output deltas from our predictions, then run the result through a
generic compression such as GZIP. Prediction and delta-encoding
means that most of the linear sequences are replaced by zeros. Since
the bytes are now constant, the stream is much more compressible
with a generic compression scheme.

Transform time
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The transform time scales linearly with the �le size. This is ex-
pected, since the transform is based on a streaming algorithm.

Compression
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File size by compression method
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When applied to a �le of keys from a 100 × 100 × 100 grid, the
transform improves compression ratios dramatically.

Results

We ran a query that �nds the median within a sliding 3 × 3 × 3
window, using an 800× 800× 800 grid of integers. The cluster has
5 nodes, with 5 reducers and 10 map slots. A custom codec applied
the transform and then compressed the transformed data with the
built-in zlib compressor.

• The intermediate data (�Map output materialized bytes�) was
reduced by 77.8% (from 55.5 GB to 12.3 GB).

• Unfortunately, total runtime increased by 106% (from 183
minutes to 377 minutes).

The runtime increase is due to the cost of the transform, which is
roughly 2.9 times the cost of gzip alone.

Key redundancy
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Hadoop assumes that all key/value pairs are independent. However,
we know that (in this case) they form a dense, contiguous grid. The
regular pattern means that most of the key information is redundant.

N-dimensional aggregation

When a cell may belong in multiple rectangles, the optimal choice is
not obvious. Since the data may have any dimensionality, the prob-
lem is equivalent to �nding a minimal hyperrectangle partitioning
of an orthogonal polytope.

Space-filling curve
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• Cells are numbered with a space-�lling curve
• Contiguous numbers are collapsed into ranges
• Multiple curves are possible, including Z-order and Hilbert

Unavoidable overlap

In the general case (such as with a sliding window), it is impossible
to avoid key overlap. Even if we try to de�ne alignments and extend
keys with empty elements to �t the alignments, there will still be
keys that lie across the alignment boundaries.

Key splitting

The Reduce function requires that all values in a single invocation
have the same key, and that all values for that key are present in that
invocation. Overlapping but unequal ranges break this constraint
when used as keys. To �x this, overlapping ranges are split on
overlap boundaries.

Effect of key aggregation
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Key aggregation virtually eliminates key overhead for a 100× 100×
100 grid of integers. Data size is reduced by 84.5%. The reduc-
tion in data is due to reduction in key data and reduction of �le
overhead. The �le format used by Hadoop adds a non-zero over-
head per key/value pair. Aggregation greatly reduces the number
of key/value pairs.

Results

We ran a query that �nds the median within a sliding 3 × 3 × 3
window, using an 800× 800× 800 grid of integers. The cluster has
5 nodes, with 5 reducers and 10 map slots.

• Intermediate data (�Map output materialized bytes�) was re-
duced by 60.7% (from 55.5 GB to 21.8 GB).

• Intermediate key/value pair count (�Reduce input records�)
was reduced by 73.3% (from 2,293,736,960 to 612,615,471).

• Total runtime was reduced by 28.5% (from 183 minutes to 131
minutes).

Conclusion

Aggregation can signi�cantly reduce runtime for queries over grid
data. Compression is not bene�cial, due to its high overhead. An-
other bene�t of aggregation versus compression is that keys stay
aggregated across read/write cycles, whereas compression needs to
be applied each time. This is especially important during the sort
phase.
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