

6th Parallel Data Storage Workshop, held in conjunciton with SC 11

In-Situ I/O Processing: A Case for Location Flexibility

Fang Zheng, Hasan Abbasi, Jianting Cao, Jai Dayal, Karsten Schwan, Matthew Wolf College of Computing, Georgia Tech Scott Klasky, Norbert Podhorszki Oak Ridge National Laboratory

I/O Bottleneck on High-End Machines

Scientific simulation and analysis are data-intensive

Appl.	Data size (MB/Core)	Data size (MB/Node)
GTC	180	2880
XGC1	120	920
GTS	220	3520
Chimera	10	160
S3D	14	224
GEM	20	320
M3D-k	14	224

- I/O subsystem is not catching up
 - capacity mismatching between computation vs. I/O
 - complicated I/O pattern
 - shared resource contention

Machine	Peak Flops	Peak I/O bandwidth	Flop/byte
Jaguar Cray XT5	2.3 Petaflops	120GB/sec	191666
Franklin Cray XT4	352 Teraflops	17GB/sec	20705
Hopper Cray XE6	1.28 Petaflops	35GB/sec	36571
Intrepid BG/P	557 Teraflops	78GB/sec	7141

Simulation and analysis spends significant portion of runtime waiting for I/O to finish!

What is In-Situ I/O Processing?

 Process/analyze simulation output data before data hits disks, during simulation time

Why In-Situ I/O Processing?

- Get around I/O bottleneck by reducing file I/O
 - Reduce data movement along I/O hierarchy
 - Extract insights from data in a timely manner
 - Prepapre data better for later analysis
 - Better end-to-end performance and cost

Placement of In-Situ Analytics

- Active R&D efforts
 - Active Storage (recently ANL and PNNL)
 - Hercules/Quakeshow (CMU&UCDavis&UTAustin&PSC)
 - ADIOS/DataStager/PreDatA (GT&ORNL)
 - DataSpaces (Rutgers&ORNL)
 - Nessie (Sandia)
 - GLEAN (ANL)
 - Functional partitioning (ORNL&VT&NCSU)
 - HDF5/DSM (ETH&CSCS)
 - ParaView co-processing library (ParaView)
 - VisIt remote visualization (VisIt)
 - In-situ indexing (LBL), compression (NCSU), etc.
- Question: Where should I run In-situ analysis?
 - Inline with simulation?
 - Seperate core?
 - Seprate staging nodes?
 - I/O servers?
 - Offline?

Placement Matters!

- Placement of In-situ I/O processing have significant impact on performance and cost
 - How resource is allocated between simulation and analysis
 - How data is moved between simulation and analysis (interconnect, shared memory, etc.)
 - Resource contention effect

Flexible Placement is Important

- No one place fits everything
 - Diverse characteristics of simulaiton and analytics
 - Machine parameters
 - Resource availability
- Understanding how placement decision affects performance and cost is valuable for end-users

Contributions of This Paper

- A (Simple) performance model to reason about placement
 - Capable of comparing performance and cost of different placements
- Application case study-- Pixie3D I/O Pipeline
 - Placement makes huge difference in performance and cost
 - Empirically validate the model

Performance and Cost Metrics

- Performance Metric
 - Total Execution Time of both simulation and analysis
- Cost Metric
 - CPU hours charged for simulation and analysis

Scenario:

- Simulation periodically generate output data and pass to analyis component
- Analysis process the simulation output data on a per-timestep basis

 Place analysis in a staging area vs. inline with simulation?

In Staging Area:

- Simulation runs on Psim nodes
- Analysis runs on another *Pa* nodes
- Space partition (*Psim+Pa*) nodes between simulation and analysis
- Pass data through interconnect

Inline with simulation:

- Both simulation and analysis run on the same *Psim* nodes
- Simulation nodes perform analysis inline synchronously on *Psim* nodes
- Simulation and analysis share *Psim* nodes in time

Key parameters

Psim	Total number of nodes on which simulation is run
Pa	Total number of nodes in staging area (if present)
Tsim(P)	Simulation's wall-clock time between two consecutive I/O actions when running on <i>P</i> nodes
Ta(P)	Analysis' wall-clock time for processing one simulation output step when running on <i>P</i> nodes
K	Total number of I/O dumps
Tsend	Simulation-side visible data movement time
Trecv	Staging node-side visible data movement time
S	Slowdown factor of simulation

Total execution time

 $Tinline = K \times [Tsim(Psim) + Ta(Psim)]$

Time

$$Tstaging = K \times \max\{Tsim(Psim) \times \underline{s} + Tsend, Trecv + Ta(Pa)\}$$

Pipeline effect of simulation and analysis

Slowdown factor of simulation (s>=1)

Performance comparison of inline vs. staging

$$Speedup = \frac{Tinline}{Tstaging}$$

Let α=Pa/Psim

(size of staging area as percentage of total simulation nodes)

β=Ta(Psim)/ Tsim(Psim)

(analysis time as percentage of simulation time on *Psim* nodes)

$$Speedup = \frac{Tsim(Psim)(1+\beta)}{\max\{Tsim(Psim) \times s + Tsend, Trecv + Ta(Psim \times \alpha)\}}$$

since

$$\max\{Tsim(Psim)\times s + Tsend, Trecv + Ta(Psim\times\alpha)\} > Tsim(Psim)\times s$$

Speedup
$$< (1 + \beta)/s$$

- What does the model say?
 - Total execution time is $(1+\theta)$ if running analysis inline with simulation on *Psim* nodes
 - If we can use $\alpha\%$ additional nodes as staging area to offload the analysis to staging area
 - If co-running staging area slows down simulation by a factor of s
 - Then the speedup of such offloading is bounded by

Speedup
$$< (1 + \beta) / s$$

- Comparing Cost of Staging vs. Inline
 - Cost (inline)=Tinline x Psim
 - Cost (staging) = Tstaging x (Psim+Pa)
- We want to know the cost efficiency of using additional staging area to offload analysis
 - Does $\alpha\%$ of additional nodes leads to $\alpha\%$ improvement in Speedup?

- Key to achieve good speedup and efficiency
 - − No slowdown: s=1
 - Tsend=0
 - Tsim(Psim)>Trecv+Ta(Pa)
 - Ta(P) scales sub-linearly with P(Ta(P)xP) decrease with P(Ta(P)xP)

- Not cost-efficient to offload linear-scalable analysis:
 - $-Ta(P) \times P$ doesn't change
 - Offloading only increase data movement cost speedup

• When the minimum size of the staging area $(\alpha 0)$, is larger than $(1+\theta)/s-1$, then offloading is always in-efficient

Application Case Study

- Pixie3D In-Situ I/O Pipeline
 - Pixie3D MHD simulation
 - Pixplot: diagnostic analysis
 - Paraview server: contour plotting
- -Implement with ADIOS/PreDatA middleware

Scalability

- Pixplot analysis and I/.O scales worse than Pixie3D simulation, so placing inline Would hurt scalability.
- Offloading to a staging area may get good speedup and efficiency

- Time Breakdown
 - Run Pixie3D on 8192 cores, Pixplot on 64 cores

- Using 0.78% additional nodes as staging area, offloading Pixplot and I/O to staging area increases performance by 33%
- The speedup is within 96% of upper bound

- Predict the speedup using the model
 - Predict by projection: measure actual performance at a small scale and project ot target scale
 - Prediction by profiling: run simulation and analysis inline at Psim nodes, and predict speedup by $(1+\beta)$

- Projection-based approach is too conservative because it doesn't consider analysis' scalability
- -Profiling-based approach is too optimistic because it omit slowdown and data copy cost

Summary of Performance Model

- Assume per-timestep, simulation-driven case
- Can be used to compare inline vs. staging
- Can be extended to offline
 - Tsend and Trecv is file read/write time
 - slowdown factor: interconnect, storage server side
- Can also be extended to dedicated core
 - Trecv is shared memory copy
 - slowdown factor: contention on shared cache/memory bandwidth within compute node

Conclusions

- Placement makes measurable difference in performance and cost
- Flexible placement is needed for diverse workloads
 - This paper focus on scalability feature of analysis
- Future work:
 - Make model more predictive
 - Automatic placement

Acknowledgements

- The authors thank Berk Geveci, Sebastien Jourdain, and Pat Marion from Kitware Inc. and Kenneth Moreland from Sandia National Laboratory for integrating ADIOS with ParaView and aid in implementing Pixie3D I/O processing pipeline.
- This work was funded in part by Sandia National Laboratories under contract DE-ACO4-94AL85000, by the DOE Office of Science, Advanced Scientific Computing Research, under award number DE-SC0005505, program manager Lucy Nowell, and by the Department of Energy under Contract No. DEACO5- 00OR22725 at Oak Ridge National Laboratory. Additional support came from the resources of the National Center for Computational Sciences at Oak Ridge National Laboratory, a grant from NSF as part of the HECURA program, a grant from the Department of Defense, a grant from the Office of Science through the SciDAC program, and the SDM center in the ASCR office.

Thank you very much!