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Scientific simulation and
analysis are data-intensive

Appl Data size Data size

' ' (MB/Core) | (MB/Node)
GTC 180 2880
XGC1 120 920

GTS 220 3520
Chimera 10 160

S3D 14 224

GEM 20 320

M3D-k 14 224
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* |/O subsystem is not catching up

— capacity mismatching between
computation vs. I/0O

— complicated I/O pattern
— shared resource contention

Machine Peak Flops Peak 1/O Flop/byte
bandwidth

Jaguar Cray XT5 2.3 Petaflops 120GB/sec 191666

Franklin Cray XT4 | 352 Teraflops 17GB/sec 20705

Hopper Cray XE6 | 1.28 Petaflops | 35GB/sec 36571

Intrepid BG/P 557 Teraflops | 78GB/sec 7141

Simulation and analysis spends significant
portion of runtime waiting for 1/O to finish!
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Process/analyze simulation output data
before data hits disks, during simulation time

T
Simulation :> :> Analysis

1 remove the bottleneck!

> Analysis

Simulation




Why In-Situ I/O Processing?
* Get around I/0O bottleneck by reducing file I/O
— Reduce data movement along I/O hierarchy
— Extract insights from data in a timely manner
— Prepapre data better for later analysis
— Better end-to-end performance and cost
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e Active R&D efforts
— Active Storage (recently ANL and PNNL)
— Hercules/Quakeshow (CMU&UCDavis&UTAustin&PSC)
— ADIOS/DataStager/PreDatA (GT&ORNL)
— DataSpaces (Rutgers&ORNL)

- Neste o PSS

— Functional partitioning (ORNL&VT&NCSU)

— HDF5/DSM (ETH&CSCS) o 0 O 0
— ParaView co-processing library (ParaView)
— Vislt remote visualization (Vislt)
— In-situ indexing (LBL), compression (NCSU), etc. -
* Question: Where should | run In-situ analysis? @ srmitoncore| prs |
— Inline with simulation? @ Helper core .
— Seperate core? @ Stagingcore | (0) ()
— Seprate staging nodes? O offinecore | O O

— 1/0 servers?
— Offline? 5
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* Placement of In-situ I/O processing have
significant impact on performance and cost

— How resource is allocated between simulation and
analysis

— How data is moved between simulation and
analysis (interconnect, shared memory, etc.)

— Resource contention effect
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No one place fits everything

— Diverse characteristics of simulaiton and analytics
— Machine parameters

— Resource availability

Understanding how placement decision
affects performance and cost is valuable for
end-users
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* A (Simple) performance model to reason
about placement

— Capable of comparing performance and cost of
different placements

* Application case study-- Pixie3D I/O Pipeline

— Placement makes huge difference in performance
and cost

— Empirically validate the model



DavrfAvrmaneca anA CAcy NMAdvicQe
FCTIHIUNTTIAIILT dllU CUOSL IVICLIILO

e Performance Metric

— Total Execution Time of both simulation and
analysis

* Cost Metric
— CPU hours charged for simulation and analysis
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e Scenario:

— Simulation periodically generate output data and
pass to analyis component

— Analysis process the simulation output data on a
per-timestep basis

Simulation Analysis

V
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Place analysis in a staging area vs. inline with
simulation?

In Staging Area: Inline with simulation:
- Simulation runs on Psim nodes - Both simulation and analysis run on
- Analysis runs on another Pa nodes the same Psim nodes
- Space partition (Psim+Pa) nodes - Simulation nodes perform analysis
between simulation and analysis inline synchronously on Psim nodes
- Pass data through interconnect - Simulation and analysis share Psim
nodes in time
Simulation| —— | Analysis Simulation
Psim nodes Pa nodes Analysis

Psim nodes
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Key parameters

Psim Total number of nodes on which simulation is run
Pa Total number of nodes in staging area (if present)
Tsim(P) Simulation’s wall-clock time between two
consecutive I/O actions when running on P nodes
Analysis’ wall-clock time for processing one
Ta(P) : . :
simulation output step when running on P nodes
K Total number of 1/O dumps
Tsend Simulation-side visible data movement time
Trecv Staging node-side visible data movement time

S Slowdown factor of simulation




rcrivliliialicc 1viv

e Total execution time
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Simulation [Tinit Tsim Ta | Tsim Ta | Tsim Ta| '~ <
Time
Tinline = K x[Tsim(Psim) + Ta(Psim)]
Simulation [Tinit Tsimx s Tsl Tsimx s Tsl Tsimx s Ts| '~ <
Staging Area | Tinit wait . Ta wait . Ta wait . Ta
: : : Time

Tstaging = K x max{Tsim(Psim)xs+Tsend,Trecv+Ta(Pa)}
/ K

Pipeline effect of simulation and analysis Slowdown factor of simulation (s>=123
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Performance comparison of inline vs. staging

Tinline

Speedup =
P P Istaging

Let a=Pa/Psim
(size of staging area as percentage of total simulation nodes)

B=Ta(Psim)/ Tsim(Psim)
(analysis time as percentage of simulation time on Psim nodes)
ITsim(Psim)(1+ )

max {Isim(Psim)x s + Tsend,Trecv + Ta(Psim x c)}

Speedup =

since
max{Tsim(Psim)xs+Tsend, Trecv+Ta(Psimxa)}>Tsim(Psim)xs

There is a upper bound: SLUEE(?’FQD < (1 + ﬁ ) /s
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* What does the model say?

— Total execution time is (1+8) if running analysis
inlne with simulation on Psim nodes

— If we can use a% additional nodes as staging area to
offload the analysis to staging area

— If co-running staging area slows down simulation by
a factor of s

— Then the speedup of such offloading is bounded by
Speedup < (1+ ) /s
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e Comparing Cost of Staging vs. Inline
e Cost (inline)=Tinline x Psim
e Cost (staging) = Tstaging x (Psim+Pa)
* We want to know the cost efficiency of using

additional staging area to offload analysis

e Does a% of additional nodes leads to a%
improvement in Speedup?
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— No slowdown: s=1

— Tsend=0

— Tsim(Psim)>Trecv+Ta(Pa)

— Ta(P) scales sub-linearly with P (Ta(P)xP decrease with P)
speedup
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17
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* Not cost-efficient to offload linear-scalable

analysis:
— Ta(P) x P doesn’t change

— Offloading only increase data movement cost
speedup

18
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e
* When the minimum size of the staging area
(x0), is larger than (1+8)/s-1, then offloading is

always in-efficient

speedup

_________________________________________________

[

0 (1+B)/s-1 a0 1

19
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Pixie3D In-Situ 1/O Pipeline
— Pixie3D MHD simulation
— Pixplot: diagnostic analysis
— Paraview server: contour plotting
—Implement with ADIOS/PreDatA middleware

370KB/proc 276MB/proc

Pixie3D | Pixplot | __,|Paraview|
Simulation Analysis server

8192 procs 64 procs 16 procs remote client
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* Scalability
100 ——
= = ey = X
S 10
c
o
(8]
()]
n
(V]
E 1
= ==é=Pixie3D Simulation
Pixplot Analysis
==pr=File Write
0-1 I I I I 1
512 1024 2048 4096 8192

Number of cores

- Pixplot analysis and I/.0O scales worse than Pixie3D simulation, so placing inline
Would hurt scalability.

- Offloading to a staging area may get good speedup and efficiency .
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* Time Breakdown
* Run Pixie3D on 8192 cores, Pixplot on 64 cores

: : | ‘ wait
simulation %
| | | | | ! | Trecv
0 20 40 60 80 100 120 B Tsend
simulation W Ta/write
tagi M Ta/compute
staging
ares - | | | BTsim
| | | |
0 20 40 60 80 100 120 Seconds

- Using 0.78% additional nodes as staging area, offloading Pixplot and |/O
to staging area increases performance by 33%
- The speedup is within 96% of upper bound 22
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Predict the speedup using the model

— Predict by projection: measure actual
performance at a small scale and project ot target
scale

— Prediction by profiling: run simulation and analysis

inline at Psim nnrlnc and predict cnnnrl up by Yy

(1+B)
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1.7
1.6 +——=t—Measured Speedup
15 —li—Predict by projection
Predict by profiling
o
5 1.4
@ »
w
2 1.3 /
1.2
1.1
1 -
512-4 1024-8 2048-16 4096-32 8192-64

Pixie3D-Pixplot
- Projection-based approach is too conservative because
it doesn’t consider analysis’ scalability

-Profiling-based approach is too optimistic because it omit
slowdown and data copy cost 24
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Assume per-timestep, simulation-driven case
Can be used to compare inline vs. staging

Can be extended to offline

— Tsend and Trecv is file read/write time

— slowdown factor: interconnect, storage server
side

Can also be extended to dedicated core

— Trecv is shared memory copy

— slowdown factor: contention on shared
cache/memory bandwidth within compute node
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SIONS

e Placement makes measurable difference in
performance and cost

* Flexible placement is needed for diverse
workloads

— This paper focus on scalability feature of analysis

* Future work:
— Make model more predictive
— Automatic placement
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