
Ranjana Rajendran • Ethan L. Miller • Darrell D. E. Long
Storage Systems Research Center
University of California, Santa Cruz

Horus: Fine-Grained Encryption-
Based Security for High

Performance Petascale Storage

Sunday, November 13, 11

What’s the problem?

• Ever-increasing volume of data
• More files
• Larger files

• Ever-increasing threat
• Intrusions
• Insider attacks
• Accidental data leakage

• HPC systems have a lot of vulnerabilities
• Storage nodes
• Metadata servers
• Thousands of clients

• Goal: limit the risk of data leakage in an HPC system
• Goal: allow protection of some parts of a file

2
Sunday, November 13, 11

Typical HPC storage
environment

• Clients interact with MDS
to open files

• Clients interact directly
with storage to read/write
data

• Maat [SC07] can provide
authorization
• No encryption...

3

MDS1: open()

2: capability
3: I/O request

4: I/O response Po
lic

y c
on

tro
l

MDS

DiskDiskDiskDiskDisk

DiskDiskDiskDiskDisk

ClientClientClientClientClientClient

Sunday, November 13, 11

Threat model: leakage of
confidential HPC data

• Traditional encryption: one key per file
• Data can be encrypted at the client
• Still vulnerable to leaks

• Compromised storage devices / nodes
• Little risk if data is encrypted
• High risk if done with other compromises

• Compromised metadata servers
• Potential for leaking keys
• Difficult to secure given complexity

• Compromised client (compute) nodes
• Keys from a single client can leak the whole file!
• There are thousands of clients...

4
Sunday, November 13, 11

Keyed hash trees

• Solution: use keyed hash trees to generate block keys from the file
key
• Clients only get the block keys they need
• Clients can’t encrypt / decrypt data for which they don’t have keys

• Nodes at any level of the tree can be given out
• Value of a key depends on parent and key’s position
• Simple to derive block key from any key above it

5

KR (file root key)

K1,0 K1,1

K2,0 K2,1 K2,2 K2,3 K2,4 K2,5

K3,0 K3,1 K3,2 K3,3 K3,4 K3,5 K3,6 K3,7 K3,8 K3,9 K3,10 K3,11

K1,2

K2,6 K2,7 K2,8 K2,9

K3,12 K3,13 K3,14 K3,15 K3,16 K3,17 K3,18 K3,19

Sunday, November 13, 11

Keyed hash trees

• Solution: use keyed hash trees to generate block keys from the file
key
• Clients only get the block keys they need
• Clients can’t encrypt / decrypt data for which they don’t have keys

• Nodes at any level of the tree can be given out
• Value of a key depends on parent and key’s position
• Simple to derive block key from any key above it

5

KR (file root key)

K1,0 K1,1

K2,0 K2,1 K2,2 K2,3 K2,4 K2,5

K3,0 K3,1 K3,2 K3,3 K3,4 K3,5 K3,6 K3,7 K3,8 K3,9 K3,10 K3,11

K1,2

K2,6 K2,7 K2,8 K2,9

K3,12 K3,13 K3,14 K3,15 K3,16 K3,17 K3,18 K3,19
Block
keys

Sunday, November 13, 11

Keyed hash trees

• Solution: use keyed hash trees to generate block keys from the file
key
• Clients only get the block keys they need
• Clients can’t encrypt / decrypt data for which they don’t have keys

• Nodes at any level of the tree can be given out
• Value of a key depends on parent and key’s position
• Simple to derive block key from any key above it

5

KR (file root key)

K1,0 K1,1

K2,0 K2,1 K2,2 K2,3 K2,4 K2,5

K3,0 K3,1 K3,2 K3,3 K3,4 K3,5 K3,6 K3,7 K3,8 K3,9 K3,10 K3,11

K1,2

K2,6 K2,7 K2,8 K2,9

K3,12 K3,13 K3,14 K3,15 K3,16 K3,17 K3,18 K3,19

Range
keys

Sunday, November 13, 11

Generating block keys

• Start at root key
• At each level, generate

new key from
• Parent key
• Level number
• “Offset” in the level

• Process can be split
• Simple to go down the tree
• “Difficult” to go up the tree

(or sideways)

6

for x = start + 1 to end do
 k ← keyed_hash(k, x || ⎣b/Bx⎦)
end for
return k

KR (file root key)

K1,0

K2,0 K2,1 K2,2 K2,3

K3,0 K3,1 K3,2 K3,3 K3,4 K3,5 K3,6 K3,7 K3,8

K2,4

K1,1

Sunday, November 13, 11

Handing out range keys

• Provide only needed range keys to each client
• Ranges cover any number of blocks
• Ranges must be aligned to key

• Hand out multiple range keys to a client if needed

• Range key usage is flexible
• Multiple clients can get key for a single block
• Any range key that “covers” a block can be used to generate its

key

7

C DA B

KR Root key

Range keys

File blocks

Clients

Sunday, November 13, 11

Using Horus

• Key Distribution Cluster
can run
• Separately

• Stateless: easier to reset between
computations

• On MDS
• On nodes doling out work

units for computation
• Keys stored using public-

key encryption
• Client forwards key to KDC
• KDC could request key from

MDS directly

8

MDS1: open()

2: Protected KR7: I/O request

8: I/O response

MDS

DiskDiskDiskDiskDisk

DiskDiskDiskDiskDisk

ClientClientClientClientClientClient

Key
Distribution
Cluster

3:
Pr

ote
cte

d K
R

5:
Ra

ng
e k

ey
(s)

9: Decrypt data

4: Calculate permitted
range key(s)6: Calculate

block key

Sunday, November 13, 11

Storing file root keys

• Encrypt file root keys with users’ public keys
• Lockbox structure similar to those used in many secure

file systems
• Store file root keys in the file system

• In a separate file
• In extended attributes attached to the file

• Alternative approach: supply file keys as part of
the setup for the computation
• More secure?
• May require additional infrastructure

9
Sunday, November 13, 11

Using Horus as an
encryption layer

• In-kernel implementation
• May be a bit faster
• Requires OS changes

• User-level implementation
• No OS changes
• Could leverage data layout

knowledge
• Divide file by content rather than by

block offset

10

OS kernelOS kernel

HDF/
NetCDF

Horus

System calls

File system

HDF/
NetCDF

Horus

System calls

File system

In-kernel User-level

Sunday, November 13, 11

Horus security

• Data is only in the clear on clients
• Storage nodes can’t leak data
• MDS can’t leak data (or keys)

• Only a client can leak data
• Client can only leak data for which it has a key

• Requires large-scale client compromise to leak the
entire file

• Can’t leak “idle” files without obtaining user’s
private key

• Revocation is an issue (as with other encrypted file
systems)

11
Sunday, November 13, 11

Ongoing work

• User-level implementation of Horus
• Layered just above system calls
• Uses extended attributes for key storage
• Includes protocol to communicate with KDC

• Explore tradeoffs between deeper tree and wider
range keys

• Eventually, integrate into HPC file system such as
Ceph or PVFS

12
Sunday, November 13, 11

Conclusions

• Security is becoming increasingly important for
HPC
• Leaving data in the clear may no longer be acceptable

• Horus prevents many attacks
• Compromise of disks or MDS
• Small-scale compromise of compute nodes & clients

• Horus allows sharing differential security for
portions of large files

• Horus can run in the kernel or at user level

➡Provide greater confidentiality for HPC data

13
Sunday, November 13, 11

14

Supported by

Questions?

Sunday, November 13, 11

