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What’s the problem?

• Ever-increasing volume of data
• More files
• Larger files

• Ever-increasing threat
• Intrusions
• Insider attacks
• Accidental data leakage

• HPC systems have a lot of vulnerabilities
• Storage nodes
• Metadata servers
• Thousands of clients

• Goal: limit the risk of data leakage in an HPC system
• Goal: allow protection of some parts of a file
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Typical HPC storage 
environment

• Clients interact with MDS 
to open files

• Clients interact directly 
with storage to read/write 
data

• Maat [SC07] can provide 
authorization
• No encryption...
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Threat model: leakage of 
confidential HPC data

• Traditional encryption: one key per file
• Data can be encrypted at the client
• Still vulnerable to leaks

• Compromised storage devices / nodes
• Little risk if data is encrypted
• High risk if done with other compromises

• Compromised metadata servers
• Potential for leaking keys
• Difficult to secure given complexity

• Compromised client (compute) nodes
• Keys from a single client can leak the whole file!
• There are thousands of clients...
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Keyed hash trees

• Solution: use keyed hash trees to generate block keys from the file 
key
• Clients only get the block keys they need
• Clients can’t encrypt / decrypt data for which they don’t have keys

• Nodes at any level of the tree can be given out
• Value of a key depends on parent and key’s position
• Simple to derive block key from any key above it
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Generating block keys

• Start at root key
• At each level, generate 

new key from
• Parent key
• Level number
• “Offset” in the level

• Process can be split
• Simple to go down the tree
• “Difficult” to go up the tree 

(or sideways)
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for x = start + 1 to end do
  k ← keyed_hash(k, x || ⎣b/Bx⎦)
end for
return k
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Handing out range keys

• Provide only needed range keys to each client
• Ranges cover any number of blocks
• Ranges must be aligned to key

• Hand out multiple range keys to a client if needed

• Range key usage is flexible
• Multiple clients can get key for a single block
• Any range key that “covers” a block can be used to generate its 

key
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Using Horus

• Key Distribution Cluster 
can run
• Separately

• Stateless: easier to reset between 
computations

• On MDS
• On nodes doling out work 

units for computation
• Keys stored using public-

key encryption
• Client forwards key to KDC
• KDC could request key from 

MDS directly
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Storing file root keys

• Encrypt file root keys with users’ public keys
• Lockbox structure similar to those used in many secure 

file systems
• Store file root keys in the file system

• In a separate file
• In extended attributes attached to the file

• Alternative approach: supply file keys as part of 
the setup for the computation
• More secure?
• May require additional infrastructure
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Using Horus as an
encryption layer

• In-kernel implementation
• May be a bit faster
• Requires OS changes

• User-level implementation
• No OS changes
• Could leverage data layout 

knowledge
• Divide file by content rather than by 

block offset
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Horus security

• Data is only in the clear on clients
• Storage nodes can’t leak data
• MDS can’t leak data (or keys)

• Only a client can leak data
• Client can only leak data for which it has a key

• Requires large-scale client compromise to leak the 
entire file

• Can’t leak “idle” files without obtaining user’s 
private key

• Revocation is an issue (as with other encrypted file 
systems)
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Ongoing work

• User-level implementation of Horus
• Layered just above system calls
• Uses extended attributes for key storage
• Includes protocol to communicate with KDC

• Explore tradeoffs between deeper tree and wider 
range keys

• Eventually, integrate into HPC file system such as 
Ceph or PVFS
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Conclusions

• Security is becoming increasingly important for 
HPC
• Leaving data in the clear may no longer be acceptable

• Horus prevents many attacks
• Compromise of disks or MDS
• Small-scale compromise of compute nodes & clients

• Horus allows sharing differential security for 
portions of large files

• Horus can run in the kernel or at user level

➡Provide greater confidentiality for HPC data
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