
PDSW’11

Pattern-Aware File
Reorganization in MPI-IO

Jun He1, Huaiming Song1, Xian-He Sun1,

Yanlong Yin1, Rajeev Thakur2

1: Illinois Institute of Technology, Chicago, Illinois

2: Argonne National Laboratory, Argonne, Illinois

PDSW’11

Outline
• Motivation

o Examples

o Basic idea

• Design
o System Overview

o Trace collecting

o Pattern classification

o I/O Trace analyzer

o Remapping table

o MPI-IO remapping layer

• Evaluation
o Remapping overhead

o Pattern variation

o Benchmarks

• Conclusion & Future Work

PDSW’11

Motivation

PDSW’11

Parallel File Systems

• Important Factors
o Number of requests

o Contiguousness of accesses

Network overhead
IOPS
Locality
…

A typical
parallel file system

PDSW’11

Mismatch
• Logical data

o Developer’s understanding, for programmability and

runtime performance

o -> Logical organization -> Access pattern

• Physical data
o Where the data blocks are stored

o -> Physical data organization

 Good logical organization

!=
 Good physical organization for better I/O performance

PDSW’11

A Tiny Example for
Irregular Data

0 1 2 3 4 5 6 7 8 9

Potential benefit:
Better spatial locality
Easier for some optimization to take effect
Less disk head movements
…

3 5 8 7 4 2 1 0 9 6

Programmer’s view
Also file system’s view

PDSW’11

An Example for Regular 2-d Array

Default Organization

A 2-D array

PDSW’11

Read a Subarray

A 2-D array

PDSW’11

After Re-organizing

PDSW’11

A Messier One

• Irregular data
• Very complex data model
• Computation which involves multiple data fields

PDSW’11

Pattern-Aware Reorganization
• Be aware of repeating non-contiguous access patterns

o n-d strided and irregular

• Try to reorganize the data so that data is contiguous.
o Less network overhead

o Less IO operations

o Better locality

o Beneficial for other optimizations, e.g. data sieving…

• Motivating Scenarios
o Application start-up

o Data analysis, visualization

o …

• Where it does not apply
o Patterns do not repeat from run to run.

PDSW’11

Design

PDSW’11

System Overview

Remapping
Table

Application

I/O Client
I/O Traces

MPI-IO

I/O Trace
Analyzer

Remapping Layer

PDSW’11

Trace Collecting
• Wrap the original function call

o Add recording function

o Call original function inside

• Process ID, MPI rank, file path, type of operation,

offset, length, data type, time stamp, and file view

Remapping
Table

Application

I/O Client
I/O Traces

MPI-IO

I/O Trace
Analyzer

Remapping Layer

PDSW’11

Pattern Classification

 Spatial Pattern
 Contiguous
 Non-contiguous

 Fixed strided
 2d-strided
 Negative strided
 Random strided
 kd-strided

 Combination of contiguous and
non-contiguous patterns

 Repetition
 Single occurrence
 Repeating

 Fixed
 Variable

Temporal Intervals
 Fixed
 Random

 Small
 Medium
 Large

Request Size

 I/O Operation
 Read only
 Write only
 Read/write

PDSW’11

I/O Trace Analyzer
• Pattern matching

o Sort Traces by time

o Separate by process

o Find out patterns

• I/O Signature

{I/O operation, initial position, dimension, ([{offset

Pattern}, {request size pattern}, {pattern of number of

repetitions}, {temporal pattern}], [...]), # of repetitions}

Remapping
Table

Application

I/O Client
I/O Traces

MPI-IO

I/O Trace
Analyzer

Remapping Layer

PDSW’11

I/O-signature-based
Remapping Table

Old New

File, {MPI_READ, offset0, 1,
([(hole size, 1), LEN, 1]), 4}

Offset0’

Remapping
Table

Application

I/O Client
I/O Traces

MPI-IO

I/O Trace
Analyzer

Remapping Layer

LEN

LEN

LEN

LEN

Offset 0'

Offset 1'

Offset 2'

Offset 3'

Offset 0 Offset 1 Offset 3Offset 2

Example, 1-d strided

PDSW’11

MPI-IO Remapping Layer
• Convert old offsets to new ones

Example:

• Read m bytes data from offset f.

• Whether this access falls in a 1-d strided pattern ?
o starting offset off

o read size rsz

o hole size hsz

o number of accesses of this pattern n

• (f-off)/(rsz+hsz) <n (1)

• (f-off)%(rsz+hsz) = 0 (2)

• m = rsz (3)

newoff = off+rsz*(f-off)/(rsz+hsz)

Remapping
Table

Application

I/O Client
I/O Traces

MPI-IO

I/O Trace
Analyzer

Remapping Layer

PDSW’11

Evaluation

PDSW’11

Experiment Environment
• Dual 2.3GHz Opteron quad-core processors

• 8G memory

• 250GB 7200RPM SATA hard drive

• 100GB PCI-E OCZ Revodrive X2 SSD (read: up to 740

MB/s, write: up to 690 MB/s).

• Ethernet/Infiniband

• Ubuntu 9.04 (Linux kernel 2.6.28-11-server)

• PVFS2 2.8.1: stripe size 64 KB

• MPICH2 1.3.1

PDSW’11

Remapping Overhead

Table Type Size (bytes) Building time
(sec)

Time of
1,000,000
lookups (sec)

1-to-1 64,000,000 0.780287 0.489902

I/O Signature 28 0.000000269 0.024771

1-D Strided Remapping Table Performance (1,000,000 accesses)

Who use 1-to-1:
PLFS uses 1-to-1 mapping table in index file.
Most OS file systems also use similar table to store free blocks in disk.

PDSW’11

Request Size Variation
• X: different of request size. For example, 5% means

the actual request size is 5% less than the one

assumed.

PDSW’11

Variation of Starting
Offset

• X: difference of starting offsets. 5% means that the

starting offset moved to the 5%th of the whole

access.

PDSW’11

R/W Performance – on
IOR

• 4 I/O clients, 4 I/O servers. 64 processes with HDD and Infiniband

PDSW’11

Performance on MPI-
TILE-IO

• 4 I/O clients, 4 I/O servers. 64 processes with HDD and Infiniband.

Elements in a tile: 1024x1024.

PDSW’11

Performance on MPI-
TILE-IO with SSD

• 4 I/O clients, 4 I/O servers. 64 processes with SSD and Infiniband.

Elements in a tile: 1024x1024.

PDSW’11

Conclusion & Future Work
Conclusion

• Different file organizations lead to very different
performance.

• Bridging logical data and physical data

 Access pattern
 -> better organization
 -> better performance

Future Work
• Multiple replicas with different organizations.

• More complicated access patterns, patterns with hints

• File reorganization for emerging storage medias, such as
SSD

PDSW’11

Acknowledgement
• Hui Jin and Spenser Gilliland (Illinois Institute of

Technology)

• Ce Yu (Tianjin University, China)

• Samuel Lang (Argonne National Laboratory)

• NSF grant CCF-0621435, CCF-0937877

• Office of Advanced Scientific Computing Research,
Office of Science, U.S. DOE, under Contract
DEAC02-06CH11357.

Thanks!

