
Pattern-Aware File Reorganization in MPI-IO
Jun He1, Huaiming Song1, Xian-He Sun1, Yanlong Yin1, Rajeev Thakur2

1: Illinois Institute of Technology, Chicago, Illinois

2: Argonne National Laboratory, Argonne, Illinois

Motivation

An Example

Design

Evaluations

Conclusions

Acknowledgement

Two Important Factors in Parallel File

Systems:

• Number of requests

• Contiguousness of accesses

One Mismatch:

• Logical data

Developer’s understanding, for

programmability and runtime

performance.
-> Logical organization -> Access pattern

• Physical data

The data blocks are stored on disk.
-> Physical data organization

Good logical organization

!=
 Good physical organization for

better I/O performance

System Overview

Trace Collecting

• Wrap the original function call

• Get: process ID, MPI rank, file

descriptor, type of operation, offset,

length, data type, time stamp, and file

view

Pattern Classification

I/O Trace Analyzer

I/O Signature

{I/O operation, initial position, dimension,

([{offset Pattern}, {request size pattern},

{pattern of number of repetitions}, {temporal

pattern}], [...]), # of repetitions}

Pattern matching

•Sort Traces by time
•Separate by process
•Find out patterns

I/O-signature-based Remapping Table

MPI-IO Remapping Layer
Convert old offsets to new ones

Read m bytes data from offset f.

Whether this access falls in a 1-d strided pattern ?

starting offset off, read size rsz, hole size hsz, number

of accesses of this pattern n

(f-off)/(rsz+hsz) <n (1)

(f-off)%(rsz+hsz) = 0 (2)

m = rsz (3)

Hui Jin and Spenser Gilliland (Illinois Institute of

Technology), Ce Yu (Tianjin University, China), Samuel

Lang (Argonne National Laboratory)

NSF grant CCF-0621435, CCF-0937877, Office of

Advanced Scientific Computing Research, Office of

Science, U.S. DOE, under Contract DEAC02-06CH11357.

Different file organizations lead to very

different performance.

Bridging logical data and physical data

 Access pattern

 -> better organization

 -> better performance

0 1 2 3 4 5 6 7 8 9

3 5 8 7 4 2 1 0 9 6

The Idea

• Be aware of repeating non-

contiguous access patterns.

• Try to reorganize the data so that

data is contiguous.

Remapping
Table

Application

I/O Client
I/O Traces

MPI-IO

I/O Trace
Analyzer

Remapping Layer

 Spatial Pattern
 Contiguous
 Non-contiguous

 Fixed strided
 2d-strided
 Negative strided
 Random strided
 kd-strided

 Combination of contiguous and
non-contiguous patterns

 Repetition
 Single occurrence
 Repeating

 Fixed
 Variable

Temporal Intervals
 Fixed
 Random

 Small
 Medium
 Large

Request Size

 I/O Operation
 Read only
 Write only
 Read/write

Old New

File, {MPI_READ, offset0, 1, ([(hole size, 1), LEN, 1]), 4} Offset0’

Remapping Overhead
Table Type Size (bytes) Building time

(sec)

Time of 1,000,000

lookups (sec)

1-to-1 64,000,000 0.780287 0.489902

I/O Signature 28 0.000000269 0.024771

Request Size Variation

Starting Offset Variation

IOR Performance

MPI-TILE-IO

MPI-TILE-IO with SSD

64 processes with HDD and Infiniband

64 processes with HDD and Infiniband

64 processes with SSD and Infiniband

