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Motivation 
•  Data staging techniques provide no 
guarantees about the data movement 
•  NoSQL-style eventual consistency not 
applicable for interactive online workflows 
•  Large number of resources increases  
  potential for faults 

Simulation 

Staging Area 

Storage 

Analysis/Viz 

Fig. 1: Example Staging Area 
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Fig. 3: Preliminary Results 

Fig. 2: Logical Protocol 
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Initial Implementation 
•  Dual Coordinators 

•  Reduces problem to 1 to 1 coordination and 
   thus reduces the volume of messages by 
   avoiding all-to-all communication 
•  Improves scalability 
•  But, localized bottlenecks that may not scale 

•  3 stages in a given transaction 
•  Init Phase: client side initializes transactions 
   and sub-transactions 
•  Read/Write Phase: Clients perform read/write 
•  Commit-Request Phase: Participants decide 
  on success of operations 

•  Database-style ACID transactions have 
not been applied to an MxN environment 

Project Goals 
•  Bring ACID style guarantees to data 
  staging 

•  Atomicity allows us to ensure successful 
  completion of our operations 
•  Consistency allows us to ensure our data is  
  up to date 
•  Isolation shields operations from interfering 
  with each other 
•  Durability ensures that once our operations 
   have completed, they are not lost in the face 
   of system failures  

Solution 
•  Distributed MxN transactions 

•  Extend current distributed transaction (1xN) 
  semantics  
•  Distributed Transactions with many 
  coordinated clients (M) and many coordinated 
  servers (N) 

•  Must be scalable 
•  Large number of clients and servers leads to  
  high message volumes (MxN) 
•  Too much overhead will reduce the gains 
  associated with using data staging 

•  Transactions and Sub-Transactions 
•  I/O consists of many writes of many variables 
•  Transaction: Groups operations in one output 
   phase 
•  Sub-transaction: represents one operation 
  (or variable) in the overall transaction 
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Challenges 
•  HPC environments have unique 
  characteristics 

•  Operate at extreme scales 
•  Extremely large data volumes 

•  Data staging systems hold data in 
  volatile memory 

•  Any crashes can lead to permanent loss of 
   data 
•  High performance requirements limit ability 
   to delay computation to ensure correctness 
   and completeness of our I/O operations.  

•  Online workflows require data 
  guarantees 

•  Data movement/processing complete prior to 
the next phase starting 
•  Only correct (non-corrupted) data sets should 
be visible and processed 
•  Data should not be removed from one queue 
prior to the successful insertion into the next 
(and the insert/delete done atomically) •  Atomicity 

•  Protocol extends upon traditional 2-Phase 
  commit to operate in MxN environments 
•  Provides guarantee that all operations have 
  completed (atomic = all or none) 
•  Correctness can be ensured by adding hashes 
   (SHA-1, MD5, etc) to data 
•  Applications are shielded from incomplete or 
  erroneous data sets 

•  Durability, Consistency, Isolation 
•  Future work 
•  Durability: can be implemented by replicating  
  operations on other nodes.  Also possible to  
  investigate an in memory RAID system or local 
  SSD 
•  Consistency: eventual consistency models fall 
  short for HPC, as re-processing stale data  
  yields no scientific insight.  
•  Isolation: must ensure operations do not  
  interfere with each other.  Especially important 
  as shared staging becomes more prominent 
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