

Performance Analysis of Commodity and Enterprise Class Flash Devices

Neal M. Master, Matthew Andrews, Jason Hick, Shane Canon & <u>Nicholas J. Wright</u>

Data Trends at NERSC

Data Trends at NERSC cont.

HPSS Total Number of Tapes

Memory Capacity Trends

- Technology trends:
 - Memory density 2X every 3 yrs; processor logic every 2
 - Storage costs (\$/MB) drops more gradually than logic costs

The cost to sense, collect, generate and calculate data is declining much faster than the cost to access, manage and store it

Flash Memory - Ubiquitous

Flash – What is it good for?

- Fits nicely into latency gap between spinning disk and memory
- Lots of open Q's:
 - PCI vs SATA vs ?
 - SLC vs MLC

- Write requires block erase performance dependent upon previous IO pattern
- Correct algorithm in software at all levels

Devices Evaluated

- 3 PCI-e SLC
 - Virident tachlOn 400GB 8x
 - FusionIO ioDrive Duo 2x
 160GB 4x
 - Texas Memory Systems
 RamSan-20 450GB 4x
- 2 SATA MLC
 - Intel X-25M 160GB
 - OCZ Colossus 250GB

IOZone Experiments

- Bandwidth
 - Vary block size: 2ⁿ KB, n =2-8
 - Vary concurrency: 2ⁿ threads, n=0-7 (1-128)
 - Vary IO Patterns: Sequential Write/Re-write, Sequential Read/Re-read, Random Write, Mixed Random Write/Read, Random Read
- IOPS
 - -4KB block size
 - Vary concurrency: 2ⁿ threads, n=0-7 (1-128)

SATA Bandwidths

0-50 **50**-100 **100**-150 **150**-200

PCI-e Bandwidths

0-100 **1**00-200 **2**00-300 **3**00-400 **4**00-500 **5**00-600 **6**00-700 **7**00-800

Bandwidth Summary

IOPS - READ

IOPS - Write

Lawrence Berkeley National Laboratory

BERKELEY LAB

Science

Peak Read Peak Write

Degradation Experiment

- Create a file using
 - Cat /dev/urandom | dd
 - that fills X% of the drive X=30,50,70,90
- Using FIO randomly write to the file
 - Using 4KB blocks IOPS
 - Using 128KB blocks BW

Degradation - IOPS

30% 50% 70% 90%

120%

Degradation - Bandwidth

Degradation BW Summary

Lawrence Berkeley National Laboratory BERKELEY LAB

Summary

- PCI devices are much more capable than the SATA ones
- For PCI read ~ write for both sequential I/O and IOPS
- It is important to test for your workload each device
- The PCI devices especially can be difficult to use.....

Future Work

- Testing Flash with Hadoop
- Evaluating various new storage technologies. PCM etc
- Explore other uses for flash
 - Metadata storage

Lawrence Berkeley National Laboratory

BERKELEY LAB

