
Towards Parallel Access of Multi-dimensional,
Multi-resolution Scientific Data

Sidharth Kumar

ViSUS : IDX Data Format

Applications in Digital Photography

Visualizing 2D Data iPhone Application Visualizing 3D Data

ViSUS : Technology to Analyze and Visualize Multi-dimensional data
IDX : Data type generated by ViSUS i/o API

  Cache Friendly
  Hierarchical Z Ordering

  Progressive access
  Multiple Levels of Resolution

IDX Data Type

HZ Ordering

13 12 14 15

8 9 10 11

4 5 6 7

0 1 2 3

10(4) 11(4) 14(4) 15(4)

2(2) 5(3) 3(2) 7(3)

8(4) 9(4) 12(4) 13(4)

0(0) 4(3) 1(1) 6(3)

XY Location Assigned HZ Order (Level)

IDX Data Stored in
HZ ordering

HZ Level = floor ((log2 (HZ Order))) + 1

HZ Order = compute HZ(X, Y)

Input Data stored in
normal XY Ordering

HZ Ordering

4 4 4 4

2 3 2 3

4 4 4 4

0 3 1 3

HZ Level XY Location Assigned HZ Order (Level)

IDX Data Stored in
HZ ordering

HZ Level = floor ((log2 (HZ Order))) + 1

HZ Order = compute HZ(X, Y)

Input Data stored in
normal XY Ordering

13 12 14 15

8 9 10 11

4 5 6 7

0 1 2 3

10 11 14 15

2 5 3 7

8 9 12 13

0 4 1 6

IDX File Format

Progressive access : Multiple Levels of Resolution

1

2

4

8

16

2 (n-1)

1 Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Level n

….. …..
….. …..

HPC simulations generate enormous amounts of Scientific
Data

Analysis and visualization of the data is a limiting factor in
scientific research

IDX data format is promising in this scenario
  Interactive navigation of simulation data.
  Real-time Zoom in on regions of interest.

Motivation: IDX in HPC Application

Motivation: Parallelizing ViSUS

Problem with current implementation

Existing tools for writing/reading IDX data
only provides a serial interface.

HPC applications fails to utilize available
parallel I/O resources.

Solution

Develop methods for writing IDX data in
parallel

Enable HPC applications to write IDX data
with scalable performance

Blue Gene/P : Making
ViSUS scalable to run on
Large Parallel Machines

ViSUS : Serial Writer

 Parallel application using ViSUS I/O to write directly into IDX format.

Divides the entire
data volume into

smaller 3D chunks

Each process
independently

writes to an
IDX data set

Visus Writes
Process with rank r writes
to an IDX file only after
the process with rank r–1
has finished writing.

The processes cannot
write concurrently due to
conflicts in updating
metadata and block
layouts.

ViSUS Serial Writer : Performance

64 Processes : 2
MiB

Total Time = 7 Sec
Speed = 2.9 MiB/

Sec

MPI_Barrier

ViSUS Write

Pr
oc

es
se

s

Time

ViSUS Serial Writer : Throughput

Best performance :
9.5MiB/s (8 GiB)

IOR Maximum
Throughput: 218MiB/s
(8GiB)

(4% of the max
throughput)

PIDX : Prototype Parallel IDX Write API

  Concurrent I/O to an IDX data set.

  Functions patterned after ViSUS for creating,
opening, reading, and writing IDX data sets.

  PIDX functions performs collective operation by
accepting an MPI communicator as an argument.

Parallel IDX Write

Rank 0 populates
metadata file and

directory hierarchy.

Each level is written in turn to the IDX
data set using independent MPI I/O write

operations.

Creation of empty
binary files distributed
across all processes.

Creating IDX
Skeleton in parallel

Each process calculates HZ ordering for
this sub-volume and reorder the data points

accordingly

Partition data into local processes
using some scheme corresponding

to local and global dimension

Parallel HZ computation

Parallel Writes

Distribution of Work for Parallel
Processing

A
pp Layer

PID
X A

PI Layer

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31
64 Elements
7 Levels (0 inc) 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

0 1 2 2 3 3 3 3

4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6

5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6

HZ Order
HZ Level

IDX : File Structure

64 Elements 7 Levels (0 inc) 8 Processes 8 Elements / Proc

Rank 0

Rank 1

Rank 2

Rank 3

Rank 4

Rank 5

Rank 6

Rank 7

PIDX : Discontinuous in File System

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

0 1 2 2 3 3 3 3

4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5

0 … 8 … 16 17 … 32 33 34 35

0 4 5 5 6 6 6 6

Data arrangement of Rank 0

Data is discontinuous in memory as well

Continuous chunks of elements exists per level

HZ Order
HZ Level

PIDX : Discontinuous in Memory

MPI_File_Open
MPI_File_Close
MPI_File_Write

ViSUS Parallel Writer : Performance

Concurrent Data Writes

Large Time Spent in File
open and File Close

Pr
oc

es
se

s

Time

MPI File Caching
MPI File write for rank 0 of size 2x2x2
data chunk without MPI file caching

MPI File write for rank 0 of size 2x2x2
data chunk with MPI file caching

MPI File
Caching
Saves on 3
File opens.

Expensive
MPI File
Creation

File
Close

L0
 L0

File Close

L1 MPI_File_Open

MPI_File_Close
MPI_File_Write

FO – File Open
FC – File Close

L2 L3
 L1 L2 L3

Expensive
MPI File
Creation

File
Close One File Open

Effect of MPI File Caching

Total Data
Written

Speed with
MPI File
Caching
(MiB/S)

Speed with
out MPI File

Caching
(MiB/S)

8 GiB 65 51

1 GiB 44 19

128
MiB

19.5 3.5

Before After

HZ optimization

  Significant amount of the I/O time spent in the
computation to generate the HZ ordering.

  Identification of bottlenecks associated with redundant
computations.

  75% improvement in I/O throughput over the file
handle improvements and up to a 10-fold
improvement over the default implementation.

Optimizations

Two Fold improvement over default implementation writing 8GiB data
using 64 nodes.

Scalability Analysis – Weak Scaling
  Constant load of 128 MB per

process.

  Processes varied from 1 to 512.

  1 process achieves 6.85 MiB/s,
comparable to the speed of serial
writer for an equal volume of data.

  The peak aggregate performance
of 406 MiB/s is reached with 512
processes. This is approximately
60% of the peak IOR throughput
achievable (667MiB/s) on 512
cores of surveyor.

Scalability Analysis – Strong Scaling

Number of Processes PIDX Throughput in MiB/s

64 120.3

512 143.9

Total Data Volume Of 8GiB

Maximum throughput achieved with 512 processes

PIDX Analysis

•  Low throughput for levels up to 16.
•  Limit hit on scalability with current implementation, falling short of the
 peak surveyor write performance achieved by IOR.
•  Desired throughput achieved only at higher levels

Proposed Solution

Problem
Contention and metadata overhead caused levels 0 through 14
to take disproportionate amount of time relative to the amount
of data that they were writing.

Solution
Plan to leverage aggregation strategies to better coordinate I/O
in the first few cases where many processes contribute data to
the same level of the IDX data set.

Conclusion

  Completed parallel write of IDX data format
  Achieved a significant fraction of peak performance, at least at

moderate scale

  Discovered overhead from unexpected sources in
metadata operations and HZ computation

  More work needed to implement aggregation routines.

Project Members

SCI

Sidharth Kumar
Valerio Pascucci

 Argonne National Laboratory

Venkatram Vishwanth
Phil Carns
Mark Hereld
Robert Latham
Tom Peterka
Michael E. Papka
Rob Ross

Thank You!!!!!!!!

Questions
?

