Sidharth Kumar

ns, \
\ Argonne®=t N ¥,

N\
h.edu

-
ViISUS : IDX Data Format

ViSUS : Technology to Analyze and Visualize Multi-dimensional data
IDX : Data type generated by ViSUS i/o API

iPhone Application Visualizing 3D Data Visualizing 2D Data

Applications in Digital Photography

-

IDX Data Type

e Cache Friendly

Hierarchical Z Ordering

 Progressive access
Multiple Levels of Resolution

HZ Ordering

Input Data stored in IDX Data Stored in

normal XY Ordering HZ ordering
13 | 12 | 14 | 15 10(4) | 11(4) | 14(4) | 15(4)
8 9 10 | 11 22) | 53) | 32) | 703)
4 5 6 7 8(4) | %) | 12(4) | 13(H)
0 1 2 3 00) | 43) | 1(1) | 6(3)
XY Location Assigned HZ Order (Level)

\/

HZ Order = compute HZ(X, Y)
HZ Level = floor ((log, (HZ Order))) + 1

HZ Ordering

Input Data stored in IDX Data Stored in

normal XY Ordering HZ ordering
13 12 14 15 10 11 14 15 {__< <__ 4
8 9 10 11 2 5 3 7 2 3 2\ 3
\\ \\ \
4 5 6 7 8 9 12 13 4 3 \4 X
0 1 2 3 0 4 1 6 0 3 1 3
XY Location Assigned HZ Order (Level) HZ Level

\/

HZ Order = compute HZ(X, Y)
HZ Level = floor ((log, (HZ Order))) + 1

/

IDX File Format

Progressive access : Multiple Levels of Resolution

Level O
Level 1

Level 2

Level 3

Level 4

Level 5

Level n 2 (n-1)

-

N
Motivation: IDX in HPC Application

HPC simulations generate enormous amounts of Scientific
Data

Analysis and visualization of the data is a limiting factor in
scientific research

IDX data format is promising in this scenario
* Interactive navigation of simulation data.
* Real-time Zoom in on regions of interest.

-

Motivation: Parallelizing VISUS

Problem with current implementation

Existing tools for writing/reading IDX data
only provides a serial interface.

HPC applications fails to utilize available
parallel /O resources.

Solution

Develop methods for writing IDX data in — /

parallel Blue Gene/P : Making
ViSUS scalable to run on

Enable HPC applications to write IDX data Large Parallel Machines

with scalable performance

~
VISUS : Serial Writer

Parallel application using ViSUS 1I/O to write directly into IDX format.

Divides the entire Each process : i
dat | it ing dentl Visus Writes
ata volume into n e.pen ently Process with rank r writes
IDX data set the process with rank r—1
S ’ has finished writing.
/Po (/ R (P2 R} 3955 . |
oo rl B g The processes cannot
T H L write concurrently due to
8 9 0 1\ A/ k7)) . . .
PATATREN(4 - conflicts in updating
12| 13| 14| 15|)
e metadata and block
layouts.

~
VISUS Serial Writer : Performance

i T || B e e e P e s Qe
I 7[:] TimeLines -
[CISLOG2 [a
Ol (™
{3 ==
14 =
\F ™
Y7 = .
f = MPI1_Barrier
310 =
312 =
114 = . '
s = Bl ViSUS Write
N17 =
j18 =
Y19]
J20 =
Y21 -
j22 —]
(7 IS =
O | =
" RIRE ==
7 BINRE ==
Q| - =
-
Q| H3 ==
O R% ==
SIS =
Q| = =_
J40 =
J41 =
142 =
Y43 -
144 =
145 ||
146 =
147 =
948 =
349 =
Bl ==
{3 i 64 Processes : 2
455 - -
i "= MiB
159 = .
2 1] ==_ Total Time =7 Sec
Y6 ~| —
I 1 i —_ .
‘@World_rar:: - I I I I I [I I [I I I I I H Speed - 29 MIB/
:‘).00 0.50 100 150 2.00 250 3.00 3.50 4.00 4.50 5.00 5.50 6.00 650 7.00
< Dl Time (seconds) S e C

\ Time

-

VISUS Serial Writer : Throughput

10

Achievable Throughput (MiB/s)

0.1

=E-ViSUS Throughput

9.6

16

128
Total Data Written (MiB)

1024

8192

Best performance :
9.5MiB/s (8 GiB)

|IOR Maximum
Throughput: 218MiB/s
(8GiB)

(4% of the max
throughput)

-

PIDX : Prototype Parallel IDX Write API

e Concurrent I/O to an IDX data set.

e Functions patterned after ViSUS for creating,
opening, reading, and writing IDX data sets.

e PIDX functions performs collective operation by
accepting an MPI communicator as an argument.

-

Parallel IDX Write

>
Partition data into local processes |3
using some scheme corresponding | I
to local and global dimension >
Rank O populates Creation of empty

metadata file and | binary files distributed
directory hierarchy. || across all processes.

Each process calculates HZ ordering for
this sub-volume and reorder the data points

accordingly

19heT |dVv Xaid

Each level is written in turn to the IDX

data set using independent MPI I/O write

operations.

istribution of Work for Parallel

D
Processing

Creating IDX
Skeleton in parallel

— Parallel HZ computatior

Parallel Writes

—

IDX : File Structure

0 1 2 3 4 5 6 7
0 1 2 2 3 3 3 3
8 9 10 11 12 13 14 15
4 4 4 4 4 4 4 4
16 17 18 19 20 21 22 23
5 5 5 5 5 5 5 5
24 25 26 27 28 29 30 31
5 5 5 5 5 5 5 5
32 33 34 35 36 37 38 39
6 6 6 6 6 6 6 6
40 41 42 43 44 45 46 47
6 6 6 6 6 6 6 6
48 49 50 51 52 53 54 55
6 6 6 6 6 6 6 6
56 57 58 59 60 61 62 63

HZ Order

HZ Level

64 Elements
7 Levels (0 inc)

/

B = | [= | = [%]5

PIDX : Discontinuous in File System

64 Elements 7 Levels (0 inc) 8 Processes 8 Elements / Proc

Rank O
Rank 1
Rank 2
Rank 3
Rank 4
Rank 5
Rank 6
Rank 7

~
PIDX : Discontinuous in Memory

H Order |G R

HZLevel () 4 5 5 6 6 6 6

Data arrangement of Rank 0
Data is discontinuous in memory as well

Continuous chunks of elements exists per level

/

Lowest / Max. D

Processes

]

,_
evaasonne s
¥

[T [«

ViISUS Parallel Writer : Performance

Concurrent Data Writes

Large Time Spent in File
open and File Close

=¥ MPI_File_Open
. MPI_File_Close
B MPI_File_Write

4 I
MPI File Caching

MPI File write for rank O of size 2x2x2
data chunk without MPI file caching

FO — File Open

FC — File Close
P Fle. File LO L1,L2,L3 MPI_File_Open
Creation e LO L1 L2 L3

B MPI_File_Close
MPI File write for rank 0 of size 2x2x2 B MPI_File_Write
data chunk with MPI file caching

MPI File
Caching
Saveson 3
File opens.

Expensive File File Cl
MPI File Close One File Open lle Liose
Creatlon /

/

o

Effect of MPI File Caching

Total Data Speed with Speed with
Written MPI File out MPI File
Caching Caching
(MiB/S) (MiB/S)
8 GiB 65 51
1 GiB 44 19
128 19.5 3.5
MiB

Before After

HZ optimization

e Significant amount of the I/O time spent in the
computation to generate the HZ ordering.

e |dentification of bottlenecks associated with redundant
computations.

e 75% improvement in I/O throughput over the file
handle improvements and up to a 10-fold
improvement over the default implementation.

~
Optimizations

With MPI File Caching and HZ Comp Optimization (MiB/s)
=©-With MPI File Caching (MiB/s)
-E-No Optimization (MiB/s) 27.6 113.5

«» 100
S~~~
)
=
)
2

= 10
o
=]
o
S
=
|—
(<))

= 1
©
>
2
=
<

0.1

0.01

2 16 128 1024 8192

Data Volume in MiB

Two Fold improvement over default implementation writing 8GiB data
using 64 nodes.

-

Scalability Analysis — Weak Scaling

Constant
process.

load of 128 MB per

Processes varied from 1 to 512.

1 process achieves 6.85 MiB/s,
comparable to the speed of serial
writer for an equal volume of data.

The peak aggregate performance
of 406 MiB/s is reached with 512
processes. This is approximately
60% of the peak IOR throughput
achievable (667MiB/s) on 512
cores of surveyor.

~

Throughput (MiB/sec)

1000

(=Y
o
o

_
o

1 2 4 8 16 32 64 128 256
Number of Processes

512

-

Scalability Analysis — Strong Scaling

Number of Processes

PIDX Throughput in MiB/s

64

120.3

512

143.9

Total Data Volume Of 8GiB

Maximum throughput achieved with 512 processes

~
PIDX Analysis

250

200 B

(Y
%)
@)

100

Achievable Throughput in MiB/s

o 3
-
-
-
[f
-)
-
-
—
—
—
— |
—

,,,,,,,,,,

(0] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
PIDX Levels

» Low throughput for levels up to 16.

 Limit hit on scalability with current implementation, falling short of the
peak surveyor write performance achieved by IOR.

» Desired throughput achieved only at higher levels

-

Proposed Solution

Problem
Contention and metadata overhead caused levels O through 14

to take disproportionate amount of time relative to the amount
of data that they were writing.

Solution
Plan to leverage aggregation strategies to better coordinate /O
in the first few cases where many processes contribute data to

the same level of the IDX data set.

-

Conclusion

 Completed parallel write of IDX data format

Achieved a significant fraction of peak performance, at least at
moderate scale

» Discovered overhead from unexpected sources in
metadata operations and HZ computation

 More work needed to implement aggregation routines.

~
Project Members

SCI Argonne National Laboratory
Sidharth Kumar Venkatram Vishwanth
Valerio Pascucci Phil Carns

Mark Hereld

Robert Latham

Tom Peterka
Michael E. Papka
Rob Ross

-

Questions
2

