Using a Shared Storage Class Memory Device to Improve the Reliability of RAID Arrays

S. Chaarawi. U. of Houston J.-F. Pâris, U. of Houston A. Amer, Santa Clara U. T. J. E. Schwarz, U. Católica del Uruguay D. D. E. Long, U. C. Santa Cruz

The problem

- Archival storage systems store
 - Huge amounts of data
 - Over long periods of time
- Must ensure long-term survival of these data
 - Disk failure rates
 - Typically exceed 1% per year
 - Can exceed 9-10% per year

Requirements

- Archival storage systems should
 - Be more reliable than conventional storage architectures
 - Excludes RAID level 5
 - Be cost-effective
 - Excludes mirroring
 - Have lower power requirements than conventional storage architectures
 - Not addressed here

Non-Requirements

- Contrary to conventional storage systems
 - Update costs are much less important

Access times are less critical

Traditional Solutions

Mirroring:

- Maintains two copies of all data
- Safe but costly

RAID level 5 arrays:

- Use omission correction codes: parity
- Can tolerate one disk failure
- Cheaper but less safe than mirroring

More Recent Solutions (I)

RAID level 6 arrays:

- Can tolerate two disk failures
 - Or a single disk failure and bad blocks on several disks
- Slightly higher storage costs than RAID level 5 arrays
- More complex update procedures
- X-Code, EvenOdd, Row-Diagonal Parity

More Recent Solutions (II)

Superparity:

- Widani et al., MASCOTS 2009
- Partitions each disk into fixed-size "disklets" used to form conventional RAID stripes
- Groups these stripes into "supergroups"
- Adds to each supergroup one or more distinct "superparity" devices

More Recent Solutions (III)

Shared Parity Disks

- Paris and Amer, IPCCC 2009
- Does not use disklets
- Starts with a few RAID level 5 arrays
- Adds an extra parity disk to these arrays

Example (I)

- Start with two RAID arrays:
 - In reality, parity blocks will be distributed among all disks

Example (II)

Add an extra parity disk

Example (III)

- Single disk failures handled within each individual RAID array
- Double disk failures handled by whole structure

Example (IV)

 We XOR the two parity disks to form a single virtual drive

Example (V)

And obtain a single RAID level 6 array

Example (VI)

• Our array tolerates all double failures

- Also tolerates most triple failures
 - Triple failures causing a data loss include failures of:
 - Three disks in same RAID array
 - Two disks in same RAID array plus shared parity disk Q

Triple Failures Causing a Data Loss

Our Idea

- Replace the shared parity disk by a much more reliable device
 - A Storage Class Memory (SCM) device
- Will reduce the risk of data loss

Storage Class Memories

- Solid-state storage
 - Non-volatile
 - Much faster than conventional disks
- Numerous proposals:
 - Ferro-electric RAM (FRAM)
 - Magneto-resistive RAM (MRAM)
 - Phase-change memories (PCM)
- We focus on PCMs as exemplar of these technologies

Phase-Change Memories

- Cells contain a *chalcogenide* material that has two states
 - Amorphous with high electrical resistivity
 - Crystalline with low electrical resistivity
- Quickly cooling material from above fusion point leaves it in amorphous state
- Slowly cooling material leaves it in crystalline state

Key Parameters of Future PCMs

- Target date
- Access time
- Data Rate
- Write Endurance
- Read Endurance
- Capacity
- Capacity growth
- MTTF
- Cost

2012 100 ns 200-1000 MB/s 10⁹ write cycles no upper limit 16 GB > 40% per year 10-50 million hours < \$2/GB

New Array Organization

Use SCM device as shared parity device

Reliability Analysis

Reliability R(t):

- Probability that system will operate correctly over the time interval [0, t] given that it operated correctly at time t = 0
- Hard to estimate

Mean Time To Data Loss (MTTDL):

- Single value
- Much easier to compute

Our Model

- Device failures are mutually independent and follow a Poisson law
 - A reasonable approximation
- Device repairs can be performed in parallel
- Device repair times follow an exponential law
 - Not true but required to make the model tractable

Scope of Investigation

- We computed the MTTDL of
 - A pair of RAID 5 arrays with 7 disks each plus a shared parity SCM
 - A pair of RAID 5 arrays with 7 disks each plus a shared parity disk

and compare it with the MTTDLs of

- A pair of RAID 5 arrays with 7 disks each
- A pair of RAID 6 arrays with 8 disks each

System Parameters (I)

- Disk mean time to fail was assumed to be 100,000 hours (11 years and 5 months)
 - Corresponds to a failure rate $\,\lambda$ of 8 to 9% per year
 - High end of failure rates observed by Schroeder + Gibson and Pinheiro et al.
- SCM device MTTF was assumed to be a multiple of disk MTTF

System Parameters

- Disk and SCM device repair times varied between 12 hours and one week
 - Corresponds to repair rates µ varying between 2 and 0.141 repairs/day

State Diagram

Impact of SCM Reliability

Comparison with other solutions

Main Conclusions

- Replacing the shared parity disk by a shared parity device increases the MTTDL of the array by 40 to 59 percent
- Adding a shared parity device that is 10 times more reliable than a regular disk to a pair of RAID 5 arrays increases the MTTDL of the array by at least 21,000 and up to 31,000 percent
- Shared parity organizations always outperform RAID level 6 organization

Cost Considerations

- SCM devices are still much more expensive that magnetic disks
- Replacing shared parity disk by a pair of mirrored disks would have achieved
 same performance improvements at a much lower cost

Additional Slides

Organization	Relative MTTDL
Two RAID 5 arrays	0.00096
All Disks	1.0
Two RAID 6 arrays	1.0012
SCM $5 \times better$	1.4274
SCM 10 \times better	1.5080
SCN 100 \times better	1.5887
SSD never fails	1.5982

Why we selected MTTDLs

- Much easier to compute than other reliability indices
- Data survival rates computed from MTTDL are a good approximation of actual data survival rates as long as disk MTTRs are at least one thousand times faster than disk MTTFs:
 - J.-F. Pâris, T. J. E. Schwarz, D. D. E. Long and A. Amer, When MTTDLs Are Not Good Enough: Providing Better Estimates of Disk Array Reliability, *Proc. 7th 12TS '08 Symp.*, Foz do Iguaçu, PR, Brazil, Dec. 2008.

