ILLINOIS INSTITUTE **Trace-based Adaptive Data Layout Optimization for** OF TECHNOLOGY **Parallel File Systems**

Huaiming Song¹ Xian-He Sun¹ Hui Jin¹ Yong Chen² ¹ Illinois Institute of Technology ² Oak Ridge National Laboratory

Data

Strips

1280MB, 4KB>.

Non-uniform Data Access Problem

Data size grows rapidly

- The whole file system: peta-scale/exa-scale
- A single file: several terabytes or even beyond
- Non-uniform data access
 - Different access patterns for different parts of data files
 - Request size could be large or small

Fine-grained Layout Optimization

- Idea of fine-grained layout optimization
 - Large file is divided into small segments
 - Individual strip size for each segment to achieve higher I/O bandwidth
 - Take data access balance into consideration
- Basic approach (5 steps)
 - 1) divide large file into small segments by a fixed
 - block size: e.g. 64MB or 128MB;

Preliminary Experimental Results

- The number of concurrent I/O processes might be varied
- Unified strip size for whole file cannot achieve optimal I/O bandwidth for all requests
- Data access might be not balanced for all I/O servers

Case Study: Chombo trace

Request sizes at different file offsets of Chombo trace. We can see that request size changes a lot on different parts of

- 2) calculate the average access pattern for each segment based on data access traces;
- 3) analyze data access cost for each segment respectively according to parallel I/O cost model, calculate the optimal strip size for each segment;
- 4) count the number of strips accessed on all I/O servers for each segment. Choose a proper strip size close to optimal strip size (in step 3) if not balanced;
- 5) combine adjacent segments into a larger segment if the two have the same or very close strip size.

Data layout metadata is described as an <offset, strip-

size> pair list, e.g. <0, 16KB: 4MB, 1MB: 1024MB,64KB:

Data Access Load Balance

Average bandwidth of mixed IOR workloads (workloads balanced). Writing performance of the proposed layout strategy can achieve about 29% to 97% improvement, while reading performance can achieve 10% to 71% improvement.

the file.

Reqeust Serial Number

The number of strips accessed on different I/O servers. Assume that file is striped in a 16-node parallel file system with 64KB strip size (default value of PVFS2). We can see that data access is not balanced for all I/O servers.

Two Key Factors Affect I/O Performance

Request size and **strip size** are two key factors that affect the bandwidth of parallel I/O systems.

AVG-Read

Average bandwidth of mixed IOR workloads (workload imbalance=0.2 when strip size is 64KB). The trace-based adaptive layout strategy can achieve 51% to 123% improvement with writing performance and 25% to 93% improvement with reading performance.

Conclusions and Future Work

Conclusions

- Propose a fine-grained segment-level data layout strategy for applications with non-uniform data access patterns
- Present the basic approaches of the proposed finegrained layout schema
- The new approach also takes data access balance into consideration
- Preliminary experimental results have verified the effectiveness of our idea
- Future Work
 - We plan to refine data access cost model, for

(a) Ethernet: fixed strip size

- Data access workload measurement: the number of strips accessed by all requests
 - Assign a counter for each I/O server
 - Update the values of counters for each request
- Workload imbalance

$$\sigma = \frac{L_{max}}{L_{avg}} - 1$$

Different strip sizes have different effects to workload balance on all I/O servers

- estimating the optimal strip size of each file segment more precisely
- We plan to work out fined-grained data layout schemas for some specific applications

The authors are thankful to Yanlong Yin of Illinois Institute of Technology, Dr. Rajeev Thakur, Dr. Robert **Ross and Samuel Lang of Argonne National Laboratory** for their constructive and thoughtful suggestions toward this study. This research was supported in part by National Science Foundation under NSF grant CCF-0621435 and CCF-0937877.

Contact Information: Huaiming Song(<u>hsong20@iit.edu</u>), Xian-He Sun(<u>sun@iit.edu</u>), Hui Jin(<u>hjin6@iit.edu</u>), Yong Chen(<u>cheny@ornl.gov</u>)