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Swapnil V. Patil and Garth A. Gibson

Problem: Scalable Directories Goal: More Scalability Through More Parallelism

Need high performance metadata services Minimize serialization
 Most file systems store a directory on a single MDS * Avoid ordered splitting of partitions, like LH* [Litwin96]
* New trends need large metadata services

 Apps generating millions of small files in a directory, like

Eliminate system-wide synchronization
* Avoid using cache consistency and distributed locking,

a simple database like GPFS [Schmuck02]
 Large apps run in parallel on clusters of 100,000s of CPUs

GIGA+ distributed indexing divides divides a directory into

Build scalable directories for shared file-systems partitions, spread across multiple servers
 POSIX-compliant, maintain UNIX file system semantics  Enables highly incremental, unsynchronized, and

o Store trillions of files and handle >100K operations/second load-balanced growth

GIGA+ Technique

Allows servers to grow their partitions independently Unique, self-describing bitmap to map partitions on a server
 Only maintain local state about their partitions  Tracks presence or absence of a partition and its split
 Keep “split history” of their partitions history

 Deterministic search of best server to send the request
 Efficiently send many bitmap updates to erroneous clients
« Compact: billion file directory, in 16 KB

Tolerates out-of-date partition-to-server maps at the client
 Due to unsynchronized growth, map becomes state &
inconsistent

 Copies updated lazily, on addressing an incorrect server
Physical view (mapping & partitions)
on each server
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Reconfiguration and Recovering in GIGA+

Original Server Configuration New Servers Handling server addition

s s, s, s, s, ;. ;.  Change the partition-to-server mapping from round-robin on the original
ey ==~ T e server set to se sequential on the newly added servers

Po | | P | | Pa| | Ps| [Pa| LPis| |Prg * Minimizes the amount of data migration during reconfiguration
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| R = 2 | replicates each server's state spread across all remaining servers
! !  Enables load-balanced failover and fast, parallel recovery
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