GIGA+: Scalable Directories for Shared File Systems

(or, How to build directories with trillions of files)
Swapnil V. Patil and Garth A. Gibson

Problem: Scalable Directories Goal: More Scalability Through More Parallelism

Need high performance metadata services Minimize serialization
 Most file systems store a directory on a single MDS * Avoid ordered splitting of partitions, like LH* [Litwin96]
* New trends need large metadata services

 Apps generating millions of small files in a directory, like

Eliminate system-wide synchronization
* Avoid using cache consistency and distributed locking,

a simple database like GPFS [Schmuck02]
 Large apps run in parallel on clusters of 100,000s of CPUs

GIGA+ distributed indexing divides divides a directory into

Build scalable directories for shared file-systems partitions, spread across multiple servers
 POSIX-compliant, maintain UNIX file system semantics Enables highly incremental, unsynchronized, and

o Store trillions of files and handle >100K operations/second load-balanced growth

GIGA+ Technique

Allows servers to grow their partitions independently Unique, self-describing bitmap to map partitions on a server
 Only maintain local state about their partitions Tracks presence or absence of a partition and its split
 Keep “split history” of their partitions history

 Deterministic search of best server to send the request
 Efficiently send many bitmap updates to erroneous clients
« Compact: billion file directory, in 16 KB

Tolerates out-of-date partition-to-server maps at the client
 Due to unsynchronized growth, map becomes state &
inconsistent

 Copies updated lazily, on addressing an incorrect server
Physical view (mapping & partitions)
on each server

Totalhash range (0,1] is split over different partitions P; Logical view of
, 0 0.25 0.5 0.75 1 the entire index server S server S; server S,
time B 3 3 3 2 3 3 3 e P T T T T T I T TITT I,
TO. @) mapping mapping mapping
i
p (0] : Po | S0 : Po | S0 Po | S0
© i
e T T P E T
Th o e O B UUUUUUNY ST PR PPN SOUORUUOPUONE SOVt S (O\)
1 I f : w PO SO PO PO SO P1 PO SO
i
PO(OIO-S] : P1(0-5/1] Pl 51 P1 51
)
I
|

I
I
[;
: I ;
: i 5 I 5 §
............. Y T S P |S : IP. IS
: ; : y : ; o | 20 - P.|S "o | -0
: 5 : 5 5 5 Py |: 22| P, |:
: IK -\' j f?& P1]51 —1E P1151 =l
I

e

‘ P |5 . P S p.|g
£ o S T Vg A VB B o M| e (e
- : : : ; ; ; P1151 . P11 . P215;

éPo(O'O'_ZS] Pz(o.25,o.5] Pl* P5+

Reconfiguration and Recovering in GIGA+

Original Server Configuration New Servers Handling server addition

s s, s, s, s, ;. ;. Change the partition-to-server mapping from round-robin on the original
ey ==~ T e server set to se sequential on the newly added servers

Po | | P | | Pa| | Ps| [Pa| LPis| |Prg * Minimizes the amount of data migration during reconfiguration

Sl I S I S S 0 e S N 5

| vl el ol (Bl o | o Handling failures
EB RN ;_:{5 el 8 WU I B) * Servers use "uniform de-clustered replication™ that deterministically

| R = 2 | replicates each server's state spread across all remaining servers
! ! Enables load-balanced failover and fast, parallel recovery
Mapping

")

Carnegie Mellon Laboratory

: (pdSi Parallel Data

