
DiskReduce: RAIDing the Cloud

PDLR10

Overview
Bin Fan, Wittawat Tantisiriroj, Lin Xiao, Garth Gibson

Google FS/ HDFS on Data Intensive Scalable Computers
• Triplication can recover from 2 failures but it trades 200%

extra storage for this redundancy
• Parity saves storage and tolerates the loss of any two nodes

• Read performance:
• RAID encoded data can be read as fast as if triplicated
• If data access very skewed, more copies helps

performance
• Treat triplicated data as in cache:

• Locality: over 90% of data blocks accessed within 1st day
after creation in M45 & DW and 50% in cluster A

Immediate vs. Background Encoding

RAID Per-File vs. RAID Across-Files
RAID Per-file: blocks in a RAID set are from the same file
+ Simple
- Too much overhead

Cloud file size distribution

0.9
0.99

0.999
0.9999

0.99999

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Fr
ac

tio
n

of
 s

pa
ce

 u
se

d
by

 �
le

s
w

ho
se

 s
iz

e
<

x DW
M45

A
C
D
M
N
U

OC

0.00001
0.0001

0.001
0.01

0.1

1K 1M 64M 1G 1T
x: �le size in bytes

Space overhead

 0%
 20%
 40%
 60%
 80%

 100%

DW M45 A C D M N U

N
or

m
al

iz
ed

Sp
ac

e
U

se
d RAID 6 by file

Ideal RAID 6

• Across 9 file systems (1.5 - 21 PB), 30 - 80% of the storage
used by files smaller than 1 GB (size of 16 blocks, 64 MB each)

• Since each block is large (64 MB by default), small files tend
to form short RAID sets

• When group size w = 8, per-file RAID 6 requires about
50%overhead while ideal RAID 6 requires only 25% overhead

RAID Across-files: blocks in a RAID set can be from
different files
+ Per-directory RAID 6 can archieve much lower overhead
- Small write problem - potential read-modify-write to update

parity blocks on single file deletion

• To reduce extra work
1. group blocks by directory (likely to be deleted
together)
2. defer deletion
3. after awhile, replace deleted blocks with new blocks

Prototype

• The prototype is built as a tool and a client library
• Tool (Mapreduce): encode a directory into RAID sets or

repair corrupted files
• Library: detect and correct missing data while reading

• Released as Mapreduce-2036 patch for HDFS 0.22.0
@ http://issues.apache.org/jira/browse/MAPREDUCE-2036

Operation Throughput
GB/s(stdev)

Disk I/O
GB/s (stdev)

Write(Triplication) 1.93(0.06) 5.80(0.18)
Encode(RAID6 8+2) 3.69(0.34) 4.61(0.43)
Repair 0.23(0.02) 2.09(0.19)

• 60 nodes (two quad-core 2.83GHz Xeon, 16GB memory,
four 7200 rpm SATA 1TB disks, 10 Gigabit Ethernet)

• Dataset: 240GB (3,840 files, each 64MB in size)

• Encoding is fast but reconstruction needs tuning

Cloud data access pattern

0.9
0.99

0.999
0.9999

0.99999

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1sec 1min 1hr 1day 1week 1mon 1yr

φ
: f

ra
ct

io
n

of
 b

lo
ck

 a
cc

es
s

at
 a

ge
 <

 t

Block Age t

M45
A

DW
 0

 20

 40

 60

 80

 100

 120

 140

 160

10blk
(640 MB)

300 blk
(18.75GB)

1500 blk
(93.75GB)

6000 blk
(375GB)

Ti
m

e
to

 re
ad

 b
ac

k
a

da
ta

se
t (

se
c)

Dataset with di�erent size

3rep
1rep-uniform
1rep-skewed

Reading performance

GFS / HDFS DiskReduce

B

A

A

B

B
A

A

A B

B

A B

Immediate encoding:
+ Efficient
- Complex: Handling failures on critical path

Background encoding:
+ Simple & no change in client code
+ Cache young data for higher read bandwidth
- Less efficient

Application

Detect failures
 and provide

online
reconstruction

RAID Library

HDFS

data

data

Create groups
RAID Tool

Encode blocks
Map Phase

Construct
metadata

Reduce Phase

 RAID set
info

 RAID set
info

list of blocks

parity

data

meta-
data
�les

Encode Path Read Path

MapReduce Job Java Library

