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Overview

Google FS/ HDFS on Data Intensive Scalable Computers

* Triplication can recover from 2 failures but it trades 200%
extra storage for this redundancy

 Parity saves storage and tolerates the loss of any two nodes

GFS / HDFS

RAID Per-File vs. RAID Across-Files

RAID Per-file: blocks in a RAID set are from the same file
+ Simple
- Too much overhead

Cloud file size distribution
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e Across 9 file systems (1.5 - 21 PB), 30 - 80% of the storage
used by files smaller than 1 GB (size of 16 blocks, 64 MB each)

e Since each block is large (64 MB by default), small files tend
to form short RAID sets

Space overhead
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e When group size w = 8, per-file RAID 6 requires about
50%overhead while ideal RAID 6 requires only 25% overhead

RAID Across-files: blocks in a RAID set can be from

different files

+ Per-directory RAID 6 can archieve much lower overhead

- Small write problem - potential read-modify-write to update
parity blocks on single file deletion

e To reduce extra work
1. group blocks by directory (likely to be deleted
together)
2. defer deletion
3. after awhile, replace deleted blocks with new blocks
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Immediate vs. Background Encoding

Immediate encoding:
+ Efficient
- Complex: Handling failures on critical path

Background encoding:

+ Simple & no change in client code

+ Cache young data for higher read bandwidth
- Less efficient

Reading performance Cloud data access pattern
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e Read performance:
* RAID encoded data can be read as fast as if triplicated
* |f data access very skewed, more copies helps
performance
 Treat triplicated data as in cache:
* Locality: over 90% of data blocks accessed within 1st day
after creation in M45 & DW and 50% in cluster A

Prototype
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* The prototype is built as a tool and a client library
 Tool (Mapreduce): encode a directory into RAID sets or
repair corrupted files
 Library: detect and correct missing data while reading
e Released as Mapreduce-2036 patch for HDFS 0.22.0
@ http://lissues.apache.org/jira/lbrowse/MAPREDUCE-2036

e 60 nodes (two quad-core 2.83GHz Xeon, 16GB memory,
four 7200 rom SATA 1TB disks, 10 Gigabit Ethernet)
 Dataset: 240GB (3,840 files, each 64MB in size)

Operation Throughput Disk 1/0O
GB/s(stdev) GB/s (stdev)
Write(Triplication) 1.93(0.06) 5.80(0.18)
Encode(RAIDG6 8+2) 3.69(0.34) 4.61(0.43)
Repair 0.23(0.02) 2.09(0.19)

e Encoding is fast but reconstruction needs tuning
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