DiskReduce: RAIDing the Cloud

Bin Fan, Wittawat Tantisiriroj, Lin Xiao, Garth Gibson

Overview

Google FS/ HDFS on Data Intensive Scalable Computers

* Triplication can recover from 2 failures but it trades 200%
extra storage for this redundancy

 Parity saves storage and tolerates the loss of any two nodes

GFS / HDFS

RAID Per-File vs. RAID Across-Files

RAID Per-file: blocks in a RAID set are from the same file
+ Simple
- Too much overhead

Cloud file size distribution

29°°%Yr——"(PFT 74 —r—"171r- - r————— 777
0.9999 | e

DiskReduce

0.999 |

0.99 |

0.9

1 .
09 F

wn

Q

=

>

0

9 x

q Vv 0.8 I

v Y 0.7 b

A 0.6

Q. ¢ 0.5 F

‘5 2 04

— 03 F

ie) 0.2 F

O Q. T
© Odbasasdabdasassnihh® : : : : : : :
L 01 T T T T T T - ™

0.01 F
0.001 f
0.0001 f

0.00001

1K ™

64M 1G 1T
x: file size in bytes

e Across 9 file systems (1.5 - 21 PB), 30 - 80% of the storage
used by files smaller than 1 GB (size of 16 blocks, 64 MB each)

e Since each block is large (64 MB by default), small files tend
to form short RAID sets

Space overhead

100% : _. :
RAID 6 by file Xxxxx3
BT 80% o ideal RAID6 —— -
(7))

23 60%F o B
ES 40%| %
58 40% 5 5
Z & 20%F % % %

0%

D

DW M45 A C M N U

e When group size w = 8, per-file RAID 6 requires about
50%overhead while ideal RAID 6 requires only 25% overhead

RAID Across-files: blocks in a RAID set can be from

different files

+ Per-directory RAID 6 can archieve much lower overhead

- Small write problem - potential read-modify-write to update
parity blocks on single file deletion

e To reduce extra work
1. group blocks by directory (likely to be deleted
together)
2. defer deletion
3. after awhile, replace deleted blocks with new blocks

YAaHoOO!

Carnegie Mellon

/.(: ‘ 5’
K p
“

Immediate vs. Background Encoding

Immediate encoding:
+ Efficient
- Complex: Handling failures on critical path

Background encoding:

+ Simple & no change in client code

+ Cache young data for higher read bandwidth
- Less efficient

Reading performance Cloud data access pattern

S 160 - . . : 0.99999
) 3rep £ 0.9999
) 140 | Tre p-umfo rm BB] 7)) 0.999
- 1 k d ==X n
g 20 rep-skewe T 8 0.99
1 0.9
% | & 1
o 100 X+ 09
~ oV 08
3 ‘S® 06
E: 00 [cm 05
@ [/5 9 0.4 o
= 40 I n 5 .
8 S 0.3 .
CIEJ 20 + . . I < - G= 8%
= ol o —

(640 MB) (18.75GB) (93.75GB) (375GB)

Dataset with different size

1day 1week Tmon 1yr
Block Age t

e Read performance:
* RAID encoded data can be read as fast as if triplicated
* |f data access very skewed, more copies helps
performance
 Treat triplicated data as in cache:
* Locality: over 90% of data blocks accessed within 1st day
after creation in M45 & DW and 50% in cluster A

Prototype

Encode Path Read Path
RAID T IIist of blocks HDES
OO — — . .
Application
Create groups [PP
RAID set data
infO data
Map Phase — <« — RAID Library —
Encode blocks | parity
>
RAID set data Detegt failucrles
L) S€ > and provide
info online
Reduce Phase - meta- reconstruction
Construct %?ta
metadata es.
| MapReduce Job I Java Library |

* The prototype is built as a tool and a client library
 Tool (Mapreduce): encode a directory into RAID sets or
repair corrupted files
 Library: detect and correct missing data while reading
e Released as Mapreduce-2036 patch for HDFS 0.22.0
@ http://lissues.apache.org/jira/lbrowse/MAPREDUCE-2036

e 60 nodes (two quad-core 2.83GHz Xeon, 16GB memory,
four 7200 rom SATA 1TB disks, 10 Gigabit Ethernet)
 Dataset: 240GB (3,840 files, each 64MB in size)

Operation Throughput Disk 1/0O
GB/s(stdev) GB/s (stdev)
Write(Triplication) 1.93(0.06) 5.80(0.18)
Encode(RAIDG6 8+2) 3.69(0.34) 4.61(0.43)
Repair 0.23(0.02) 2.09(0.19)

e Encoding is fast but reconstruction needs tuning

Parallel Data
Laboratory

")

PDLR10

