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Google FS/ HDFS on Data Intensive Scalable Computers
• Triplication can recover from 2 failures but it trades 200% 

extra storage for this redundancy
• Parity saves storage and tolerates the loss of any two nodes 

•  Read performance:
•  RAID encoded data can be read as fast as if triplicated
•  If data access very skewed, more copies helps 

performance
•  Treat triplicated data as in cache:

•  Locality: over 90% of data blocks accessed within 1st day 
after creation in M45 & DW and 50% in cluster A

Immediate vs. Background Encoding

RAID Per-File vs. RAID Across-Files 
RAID Per-file: blocks in a RAID set are from the same file
+ Simple
- Too much overhead

Cloud file size distribution 
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Ideal RAID 6

• Across 9 file systems (1.5 - 21 PB), 30 - 80% of the storage 
used by files smaller than 1 GB (size of 16 blocks, 64 MB each)

• Since each block is large (64 MB by default), small files tend 
to form short RAID sets

• When group size w = 8, per-file RAID 6 requires about 
50%overhead while ideal RAID 6 requires only 25% overhead

RAID Across-files: blocks in a RAID set can be from
different files
+ Per-directory RAID 6 can archieve much lower overhead
- Small write problem - potential read-modify-write to update 

parity blocks on single file deletion

• To reduce extra work
1. group blocks by directory (likely to be deleted
together)
2. defer deletion
3. after awhile, replace deleted blocks with new blocks

Prototype 

• The prototype is built as a tool and a client library
• Tool (Mapreduce): encode a directory into RAID sets or 

repair corrupted files
• Library: detect and correct missing data while reading

• Released as Mapreduce-2036 patch for HDFS 0.22.0
@ http://issues.apache.org/jira/browse/MAPREDUCE-2036

Operation Throughput
GB/s(stdev)

Disk I/O
GB/s (stdev)

Write(Triplication) 1.93(0.06) 5.80(0.18)
Encode(RAID6 8+2) 3.69(0.34) 4.61(0.43)
Repair 0.23(0.02) 2.09(0.19)

• 60 nodes (two quad-core 2.83GHz Xeon, 16GB memory, 
four 7200 rpm SATA 1TB disks, 10 Gigabit Ethernet)

• Dataset: 240GB (3,840 files, each 64MB in size)

• Encoding is fast but reconstruction needs tuning

Cloud data access pattern
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Reading performance
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Immediate encoding:
+ Efficient
- Complex: Handling failures on critical path

Background encoding:
+ Simple & no change in client code
+ Cache young data for higher read bandwidth
- Less efficient

Application
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