
Performance Testing 
    Weak scaling                                    64x64x64 sample set 
    (load 128 MB per process)                         (64 processes) 

• Single process achieves approximately 6.85 MiB/s, comparable to the speed of a 
serial writer for an equal volume of data. 
•  The peak aggregate performance of 406 MiB/s is reached with 512 processes. 
This is approximately 60% of the peak IOR throughput achievable (667MiB/s) on 
512 cores of surveyor. 
• Pink corresponding to file opens and purple corresponds to file close, all the 
processes writes to the IDX file in parallel.	
  

Future	
  Work	
  
Both with weak and strong scaling, a limit is hit on scalability with our 
current implementation, falling short of the peak surveyor write 
performance achieved by IOR. 

  We found that contention and 
  metadata overhead caused 
  levels 0 through 6 to take a 
  disproportionate amount of 
  time relative to the amount of 
  data that they were writing. We 
  plan to leverage aggregation 
  strategies to better coordinate 
  I/O in the first few cases where 
  many processes contribute 
  data to the same level of the 
  IDX data set. 
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Motivation 
         IDX enables fast and efficient access to large scale scientific data. 
         Problem with current  implementation  
            Existing tools for writing IDX data only provides only a serial interface.  
            HPC applications  fails to utilize available  parallel I/O resources. 
        Solution 
            Investigate methods for writing IDX data in parallel  
            Enable HPC applications to write IDX data with scalable  performance 

Visus (IDX Format) 
      Multiple levels of resolution : Easy to query data of desired resolution and    
      dimension.  

            Data Visualized at lowest resolution        Clipped Data Visualized at high Resolution   Clipped Data visualized at low resolution 

                                                                                 (530 Mib Data Set of Rat’s retina scan) 
      Hierarchical Z (HZ) ordering - The crux behind IDX data  
      format, computation requires spatial coordinates of data. 

     Data is then reorganized into levels corresponding  
     to the formulation: 
                   Level = floor ((log2 (HZ index))) + 1 
    Level corresponds to different resolution level the data  
    is rearranged into. 

Visus Serial IDX Writer 
        A micro benchmark that divides entire data volume into smaller 3D chunks. Each 
process  independently writes to the IDX data  set. No concurrent writes  due to 
conflicts in updating metadata and layout. MPI barriers and tokens used  to  maintain 
order amongst processes	
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• The maximum performance is only 9.5 MiB/s. Using IOR, we obtain a peak 
performance of 218MiB/s for 64 processes writing a total of 8GiB. Thus, we are able to 
achieve only 4% of the maximum throughput. 
• Jumpshot profile of 64 processes writing an IDX file using ViSUS. Each horizontal line 
represents a process, the yellow regions correspond to MPI barrier waits and black 
regions correspond to time spent writing data. As expected, we notice that a large 
portion of the runtime for each process is spent waiting for the I/O token.  
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  PIDX : Prototype API For Parallel IDX Writes 
         This API is called Parallel IDX (PIDX) and includes functions patterned after 
ViSUS for creating, opening, reading, and writing IDX data sets. Each of the PIDX 
functions is a collective operation that accepts an MPI communicator as an argument.	
  

The data in this case is provided in the form of a contiguous, row-major ordered data 
buffer. Each process calculates an HZ ordering for its sub-volume, reorder the data 
points accordingly, and write the data points to interleaved portions of the IDX data set.  

Partition entire data 
into local processes 
using some scheme 

corresponding 
to local and global 

dimension 

Each Process 
calculates Local 

HZ Levels, HZ Offsets 
Number of elements 

per level and 
Corresponding data 

buffer 

Each process writes 
to the binary files 

using the 
information stored in 

data-structure 
calculated in step 3. 

Rank 0 Creates the  
.idx meta-data file 
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creates binary files 
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Optimization Strategies 
         The PIDX prototype described in the previous section greatly 
improved I/O performance over serial use of the ViSUS 

MPI File Caching 
Following figure highlights the time spent by rank 0 when writing data into 
the four initial HZ levels. The Pink regions represent File Open Time. 

                                           1 file open for all 4 levels       

              expensive File Open Time                                            4 File Opens for HZ levels 1, 2, 3, 4   
                                               (File Create) 

          Jumshot for rank zero writing 8 samples in four different levels. 
       Above one without MPI file caching and below one with File caching. 

Performance of the API is improved by performing MPI file caching while 
writing data, which prevents unnecessary file opens corresponding to 
each HZ level. 

HZ computation Optimization 
Indentified bottlenecks associated with redundant computations as well 
as inadequate use of the floating point double hummers. 
From the graph above: there is almost 220% increase in performance of 
the API after the two different optimizations. 
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