
Performance Testing
 Weak scaling 64x64x64 sample set
 (load 128 MB per process) (64 processes)

• Single process achieves approximately 6.85 MiB/s, comparable to the speed of a
serial writer for an equal volume of data.
•  The peak aggregate performance of 406 MiB/s is reached with 512 processes.
This is approximately 60% of the peak IOR throughput achievable (667MiB/s) on
512 cores of surveyor.
• Pink corresponding to file opens and purple corresponds to file close, all the
processes writes to the IDX file in parallel.	

Future	
 Work	

Both with weak and strong scaling, a limit is hit on scalability with our
current implementation, falling short of the peak surveyor write
performance achieved by IOR.

 We found that contention and
 metadata overhead caused
 levels 0 through 6 to take a
 disproportionate amount of
 time relative to the amount of
 data that they were writing. We
 plan to leverage aggregation
 strategies to better coordinate
 I/O in the first few cases where
 many processes contribute
 data to the same level of the
 IDX data set.

	
 	
 	
 	
 	
 	
 	
 	
 Time	
 Taken	
 To	
 Write	
 The	
 Various	
 Idx	
 Levels	
 For	
 A	
 8	
 Gib	
 Data	
 	

	
 	
 	
 	
 	
 	
 	
 	
 Volume	
 On	
 64	
 Processes

Motivation
 IDX enables fast and efficient access to large scale scientific data.
 Problem with current implementation
 Existing tools for writing IDX data only provides only a serial interface.
 HPC applications fails to utilize available parallel I/O resources.
 Solution
 Investigate methods for writing IDX data in parallel
 Enable HPC applications to write IDX data with scalable performance

Visus (IDX Format)
 Multiple levels of resolution : Easy to query data of desired resolution and
 dimension.

 Data Visualized at lowest resolution Clipped Data Visualized at high Resolution Clipped Data visualized at low resolution

 (530 Mib Data Set of Rat’s retina scan)
 Hierarchical Z (HZ) ordering - The crux behind IDX data
 format, computation requires spatial coordinates of data.

 Data is then reorganized into levels corresponding
 to the formulation:
 Level = floor ((log2 (HZ index))) + 1
 Level corresponds to different resolution level the data
 is rearranged into.

Visus Serial IDX Writer
 A micro benchmark that divides entire data volume into smaller 3D chunks. Each
process independently writes to the IDX data set. No concurrent writes due to
conflicts in updating metadata and layout. MPI barriers and tokens used to maintain
order amongst processes	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (MiB)	

• The maximum performance is only 9.5 MiB/s. Using IOR, we obtain a peak
performance of 218MiB/s for 64 processes writing a total of 8GiB. Thus, we are able to
achieve only 4% of the maximum throughput.
• Jumpshot profile of 64 processes writing an IDX file using ViSUS. Each horizontal line
represents a process, the yellow regions correspond to MPI barrier waits and black
regions correspond to time spent writing data. As expected, we notice that a large
portion of the runtime for each process is spent waiting for the I/O token.

Towards	
 Parallel	
 Access	
 of	
 Mul5-­‐resolu5on	
 and	
 Mul5-­‐dimensional	
 Scien5fic	
 Data	

	
 	
 Sidharth	
 Kumar,	
 Venkatram	
 Vishwanath,	
 Philip	
 Carns,	
 	

Valerio	
 Pascucci	
 ,Robert	
 Latham,	
 Tom	
 Peterka,	
 Michael	
 Papka,	
 Robert	
 Ross	

X	
 Y	
 Z	
 XYZ	

Value	

Z	

Order	

H
Z	

Level	

0	
 0	
 0	
 0	
 0	
 0	
 0	

0	
 0	
 1	
 1	
 1	
 1	
 1	

0	
 1	
 0	
 2	
 2	
 2	
 2	

0	
 1	
 1	
 3	
 3	
 3	
 2	

1	
 0	
 0	
 4	
 4	
 4	
 3	

1	
 0	
 1	
 5	
 5	
 6	
 3	

1	
 1	
 0	
 6	
 6	
 5	
 3	

1	
 1	
 1	
 7	
 7	
 7	
 3	

0.32	

1.60809	

5.425506	

6.544367	

9.5532	

0.1	

1	

10	

2	
 16	
 128	
 1024	
 8192	

	
 PIDX : Prototype API For Parallel IDX Writes
 This API is called Parallel IDX (PIDX) and includes functions patterned after
ViSUS for creating, opening, reading, and writing IDX data sets. Each of the PIDX
functions is a collective operation that accepts an MPI communicator as an argument.	

The data in this case is provided in the form of a contiguous, row-major ordered data
buffer. Each process calculates an HZ ordering for its sub-volume, reorder the data
points accordingly, and write the data points to interleaved portions of the IDX data set.

Partition entire data
into local processes
using some scheme

corresponding
to local and global

dimension

Each Process
calculates Local

HZ Levels, HZ Offsets
Number of elements

per level and
Corresponding data

buffer

Each process writes
to the binary files

using the
information stored in

data-structure
calculated in step 3.

Rank 0 Creates the
.idx meta-data file
other processes

creates binary files
in parallel

Optimization Strategies
 The PIDX prototype described in the previous section greatly
improved I/O performance over serial use of the ViSUS

MPI File Caching
Following figure highlights the time spent by rank 0 when writing data into
the four initial HZ levels. The Pink regions represent File Open Time.

 1 file open for all 4 levels

 expensive File Open Time 4 File Opens for HZ levels 1, 2, 3, 4
 (File Create)

 Jumshot for rank zero writing 8 samples in four different levels.
 Above one without MPI file caching and below one with File caching.

Performance of the API is improved by performing MPI file caching while
writing data, which prevents unnecessary file opens corresponding to
each HZ level.

HZ computation Optimization
Indentified bottlenecks associated with redundant computations as well
as inadequate use of the floating point double hummers.
From the graph above: there is almost 220% increase in performance of
the API after the two different optimizations.

0.085	

0.5536	

3.5448	

19.74	

51.19	

0.606	

4.381	

19.547	

44.016	

65.379	

1.123	

7.321	

32.54	

77.56	

113.46	

0.01	

0.1	

1	

10	

100	

2	
 16	
 128	
 1024	
 8192	

No	
 Op5miza5on	
 (MB/s)	

With	
 MPI	
 File	
 Caching	
 (MB/s)	

With	
 MPI	
 File	
 Caching	
 and	
 HZ	
 Comp	
 Op5miza5n	
 (MB/s)	

6.85	

41.93	

113.46	

406.09	

1	

10	

100	

1000	

1	
 2	
 4	
 8	
 16	
 32	
 64	
 128	
 256	
 512	

Level	
 Time	
 Level	
 Time	
 Level	
 Time	

0	
 1.596	
 11	
 0.129	
 22	
 0.304	

1	
 1.444	
 12	
 0.151	
 23	
 0.363	

2	
 1.544	
 13	
 0.151	
 24	
 1.979	

3	
 1.530	
 14	
 0.148	
 25	
 2.140	

4	
 1.653	
 15	
 0.102	
 26	
 2.706	

5	
 1.640	
 16	
 0.085	
 27	
 4.605	

6	
 1.628	
 17	
 0.077	
 28	
 6.760	

7	
 0.148	
 18	
 0.086	
 29	
 10.533	

8	
 0.132	
 19	
 0.087	
 30	
 18.251	

9	
 0.134	
 20	
 0.140	

10	
 0.132	
 21	
 0.211	

Publica0on	

S. Kumar, V. Vishwanath, P. Carns, V. Pascucci, R. Latham, T. Peterka, M. Papka,
R. Ross. "Towards Parallel Access of Multi-dimensional, Multi-resolution Scientific
Data," 5th Petascale Data Storage Workshop, Supercomputing 2010

Throug
hput	

MiB/S	

Throug
hput	

MiB/S	

