

HPSS 8 Metadata Services Evolution to Meet the Demands of Extreme Scale Computing

David Boomer, Kayla Broussard, Michael Meseke IBM

Introduction

• The Extreme Scale era is upon us.....

petabytes of main memory	
+	
hundreds of thousands processors	
And millions of cores	
	1

100s of billions to trillions of files,	
exabytes of data,	
petabytes of metadata and	>
tens of thousands of storage devices	

- High Performance Storage System (HPSS)
 - manages petabytes of data on hundreds of disks, tapes, and robotic tape libraries
 - provides highly scalable hierarchical storage management that keeps recently used data on disk and less recently used data on tape
 - uses cluster, LAN, WAN and/or SAN technology to aggregate the capacity and performance of many computers, disks, and tape drives into a single virtual file system of exceptional size and versatility

Distributed Metadata Architecture HPSS 8

The HPSS network centric architecture provides an extremely scalable I/O infrastructure necessary to handle the throughput

The Challenge

- Exascale computing presents data throughput and metadata management challenges
- HPSS metadata management services are limited to the capability of a single nonpartitioned database engine running on a single computer system
 - Significant bottleneck when dealing with trillions of files
 - Each file HPSS manages requires a distinct set of database transactions, regardless of size (more files = more database transactions)
- Eventually the pace of ingest will surpass the single database engine capacity
 - Fixed per file metadata transaction overhead directly impacts the aggregate throughput

Single Metadata Architecture HPSS

Distributed Namespace Metadata Challenges

- Distributed namespaces are well researched with many techniques, each with various strengths and weaknesses
- Distribution of HPSS file metadata and client references over multiple metadata servers is accomplished using a hash technique based on directory id and file name
 - Hash results in a predictable range of values
 - Easily integrated with DB2 partitioning feature

Easily integrated with HPSS client

- Consistent interface for determining metadata location
- HPSS V8 hash technique and DB2 functionality combine to:
 - Maintain POSIX naming rules

Data Storage

- Provide balanced and self-leveling metadata distribution
- Co-locate related metadata items
- Minimize directory hotspots
- Minimize network overhead

Hash technique extended to clients, allows clients to direct requests to "owning" NS- MDS node thus avoiding extra network hops.

IPSS Client	HPSS hash	1	2	3	4	5	6 7	•••	10,000
hash array	DB2 hash	2	3	1	1	2	2 3	•••	1
		-							

Name Space Metadata Servers

Prototype Results

- Extreme Scale HPSS 8 distributed metadata services
 - Single NS-MDS node and 8 SS-MDS nodes provides 10x performance of HPSS
 V7 single metadata server architecture

The Solution

- Extreme Scale HPSS includes
 - A distributed POSIX namespace via multiple metadata servers (NS MDS)
 Multiple storage space metadata servers (SS MDS)
- DB2 IBM's enterprise class relational database is the central component
 - DB2's Data Partitioning Feature provides the necessary infrastructure to distribute HPSS metadata
 - The partitioning feature is based on a share nothing architecture, where each system manages the local partition, but has access to all partitions transparently.
 - DB2 is extremely well tested and supported by IBM; HPSS development takes advantage of this mature and robust capability
- Provides a scalable metadata services infrastructure allowing additional NS MDS and SS MDS nodes to be added with minimal downtime and restructuring
- The end result creates a metadata services layer that aggregates the capacity, resources and performance of many computers into a single logical metadata repository

- Additional metadata nodes provide additional metadata transaction capacity
- Significant growth capability expected beyond prototype configuration

Measurement HPSS Version	File Creates per Second	Database Transactions per Second	Scalability
HPSS V7 1 Metadata Server Node	800	3,200	1 x
HPSS V8 1 NS-MDS Node 8 SS-MDS Nodes	8,000	32,000	10x
HPSS V8 2 NS-MDS Nodes 16 SS-MDS Nodes	16,000	64,000	20x

