
Karthik Vijayakumar1, Frank Mueller1,
Xiaosong Ma1,2, Philip C. Roth2

1 Department of Computer Science, NCSU
2 Computer Science and Mathematics Division, ORNL

ScalaIOTrace: Scalable I/O Tracing and

Analysis

 2

Problem

 Analyzing I/O behavior of parallel
applications is difficult

— Due to multi-level layering in
parallel I/O

— Abstractions hide complex
implementation details

— Difficult to analyze
interactions between multiple
layers

— May hide bottleneck due to
poor lower layer implementation

Application

Kernel

POSIX I/O

MPI-IO

HDF

NetCDF

 3

I/O Behavior Analysis

 Existing approaches and short comings
— Application I/O kernels (Flash I/O)

+ Exact application I/O behavior retained
+ Simplify/Eliminate communication & computation
- Analysis of scientific application is difficult
- Requires substantial man-power to maintain

— I/O event tracing
+ Easy to generate traces by code instrumentation
- Scalability issues due to large traces
- Disturbance in application run due to trace accesses

 4

Our Approach

 Trace-driven approach to analyze I/O behavior

 Goals
— Extract traces at multiple layers of abstraction
— Maintain structure of events
— Automate trace analysis
— Full replay (independent of original application)
— Scalable
— Lossless compression
— Retain causal order
— Preserve time
— Facilitate customization/integration with other tools

 5

ScalaIOTrace Design Overview

 Built on ScalaTrace [IPDPS
‘07] to collect MPI-IO &
POSIX I/O traces

— Use MPI profiling layer
for MPI-IO and
communication calls

— Use GNU linker’s link time
function interposition
facility for POSIX I/O
calls

— Compress at the task-level
(Intra-node)

— Compress across all nodes
(Inter-node)

MPI Application

MPI
Function

call

MPI Profiling Layer

POSIX Wrappers

Task level compression
framework

Cross node compression
framework

 6

Intra-Node Compression Example

 Consider the MPI operation stream:
op1, op2, op3, op4, op5, op3, op4, op5

op1 op2 op3 op4 op5 op5

target
head

target
tail

target
tail

target
tail

target
tail

target
tail

merge
head

merge
head

op3

target
head

merge
tail

target
tail

op4

target
tail

merge
tail

target
head

target
tail

merge
tail

target
head

match
matchmatch

 7

Intra-Node Compression Example

 Consider the MPI operation stream:
op1, op2, op3, op4, op5, op3, op4, op5

Regular Section Descriptor (RSD)

Power Regular Section Descriptor (PRSD)
Example:

op1 op2 op3 op4 op5((), iters = 2)

op1 op2 op3 op4 op5((), iters = 2), iters = 10)

 8

Inter-Node Compression Framework

 Invoked after all computations done (in MPI_Finalize wrapper)
 Merges operation queues produced by task-level framework
 Binary radix tree reduction process

Task 0

Task 1

Task 2

Task 3

op1 op2 op3

op4 op5 op6

op1 op2 op3
Match

op4 op5 op6

 9

Inter-Node Compression Framework

 Invoked after all computations done (in MPI_Finalize wrapper)
 Merges operation queues produced by task-level framework
 Binary radix tree reduction process

Task 0

Task 1

Task 2

Task 3

op1 op2 op3

op4 op5 op6

op4 op5 op6
Match

 10

Time Preservation

 Recording absolute timestamps not scalable
 Record delta time

— Computation delta
— MPI delta

 Minor variations prevent exact match
 Aggregate stats (min/max/mean) per op

— Traces lossless for communication parameters
— But lossy for delta-time recording

 Histograms (dynamically balanced)

 11

I/O Trace Collection

 Collecting application access behavior alone is not enough
 Interaction between different layers is important

— Isolate application’s behavior at a certain level
— Correlate activities at multiple levels

 Idea: reuse infrastructure for lossless I/O tracing
 Collect MPI-IO(higher level) and POSIX I/O (lower level) traces

— Expose multiple layers
— Enable analysis of multi-level traces in a scalable way
— Can be extended to any levels

 12

MPI-IO Trace Generation

 Umpire [SC’00]  wrapper generator for MPI profiling layer
— Initialization wrapper
— Tracing wrapper
— Termination wrapper

 File name compression
— Checkpoint files are written periodically
— File names typically have static and dynamic component
— Merge if static components match

 I/O calls used repetitively to access shared files using file
offsets

— Encode access pattern into three fields <start, stride, total
number of elements>

 13

MPI-IO Trace Generation (cont.)

 Representation of file handles
— Opaque pointers, no repetitive patterns
— Store handle in a buffer, added to buffer on file open
— Encoded with buffer offset during file access

 Support for custom data types (MPI_Type_create_darray)
— Encoding similar to file handles

 14

POSIX I/O Trace Generation

 POSIX I/O belong to lower level in I/O stack
— Provide details on actual requests made to parallel file

system
— Also some application do not use higher level I/O libraries

 Enhanced Umpire tool to generate POSIX I/O wrappers
 Code Instrumentation using GNU link time interposition facility

— “--wrap” option used to collect traces for open, write, etc.
— Control redirected to interposition function “__wrap_open”
— Separate library provided for POSIX wrappers.

 15

Trace Replay

 ScalaIOTrace supports scalable replay engine
— Reissues MPI-IO and communication calls
— No trace decompression
— Issues calls with original parameters with dummy payloads

 Time preserving replay
— Simulate computation by adding delay
— Pick delta value randomly from histogram +extremes

(min/max)

 16

Post-mortem Trace Analysis

 Problems in conventional trace analysis
— Requires separate application runs

 Replay tool facilitates post-mortem analysis
 Generic event handlers provided for all recorded functions

— User specific code can be added to collect information
 Facilitates anomaly detection by iterative refinements

 17

Experimental Results

 Environment
— Jaguar Cray XT4 at NCCS(ORNL)
— AMD 2.1 GHz quadcore
— 8GB of RAM/node

 Varied:
— Number of nodes

 Examined metrics:
— Trace file size
— Aggregation results from trace analysis

 Results for
— Flash I/O Benchmark
— Parallel Ocean Program (Developed at LANL)

 18

Flash I/O Benchmark

Simulates I/O behavior of FLASH
(adaptive mesh hydrodynamics)
application

Uses parallel HDF5 I/O library
Log scale: file size [Bytes], 2-1024

nodes
Two categories: No compression,

Inter-node compression
 Uncompressed traces

— Linear growth
 Inter-node compressed traces

— Almost constant
— Due to SPMD prog. Style

 19

Parallel Ocean Program (POP)

 Ocean Circulation Model
— Developed at Los Alamos National Laboratory

 No parallel I/O
— Uses NetCDF (in turn uses POSIX I/O)
— Node 0 performs I/O, collects/distributes data from/to

other nodes
 Problem size

— 1 degree grid resolution
— Problem size 320x384 grids
— Vary max. # of blocks assigned to each node

 Goal: Analyze compression effectiveness of real scientific
applications

 20

POP – Trace File Size

Three categories: Flat/Intra-
node/Inter-node

Log scale: file size [Bytes], 2-
1024 nodes

 Vary # of blocks assigned to
nodes with increasing nodes

 Intra-node compression
— Linear growth
— Size: order of magnitude

less than flat traces
 Similar behavior for inter-

node compressed traces
 Imperfect timestep loop

compression
— ε-convergence problem

 21

POP – Post-mortem Analysis

Aggregation results:
 Results for I/O and comm. Ops
 (collective/blocking/non-block)
 Avg. # of operations for
 non-zero nodes.
 Blocking calls are I/O induced

— Parallel I/O would have
 reduced comm. overhead

 Comm. overhead increases due to strong scaling
 Comm. performed in sub-groups

— Avg. non-blocking call for all others > than that of node 0

 22

Future Work

 Introduce user-tunable imprecision
— Exact iteration counts not useful in cases of convergence

problems
— Irregular trace events due to data-dependent conditionals
— Trade off: Trace file size vs. lossless traces

 Enhance trace analysis framework
— Provide configurable options to collect statistical information
 without user understanding trace file

 23

Conclusion

 Aggressive trace compression
— Near constant size trace file for Flash I/O
— Two orders of magnitude smaller trace file for POP

 Capability to record traces at several layers
 Framework for post-mortem trace analysis
 Download URL:

— http://moss.csc.ncsu.edu/~mueller/ScalaTrace/

http://moss.csc.ncsu.edu/~mueller/ScalaTrace/

 24

Acknowledgements

 Funded in part by NSF grants 0237570 (Career), 0621470,
0937908, 0429653 and joint faculty appointment between Oak
Ridge National Laboratory and NCSU

 Part of this work was performed under auspices of Oak Ridge
National Laboratory, which is managed by UT-Battelle, LLC under
Contract No. DE-AC05-00OR22725

 Used resources of National Centre for Computational Sciences at
ORNL, supported by Office of Science of the Department of
Energy under contract DE-AC05-00OR22725

	Karthik Vijayakumar1, Frank Mueller1, Xiaosong Ma1,2, Philip C. Roth2 1 Department of Computer Science, NCSU 2 Computer Science and Mathematics Division, ORNL
	Problem
	I/O Behavior Analysis
	Our Approach
	ScalaIOTrace Design Overview
	Intra-Node Compression Example
	Slide 7
	Inter-Node Compression Framework
	Slide 9
	Time Preservation
	I/O Trace Collection
	MPI-IO Trace Generation
	MPI-IO Trace Generation (cont.)
	POSIX I/O Trace Generation
	Trace Replay
	Post-mortem Trace Analysis
	Experimental Results
	Flash I/O Benchmark
	Parallel Ocean Program (POP)
	POP – Trace File Size
	POP – Post-mortem Analysis
	Future Work
	Conclusion
	Acknowledgements

