ScalalOTrace: Scalable I/O Tracing and
Analysis

Karthik Vijayakumar', Frank Mueller?,
Xiaosong Ma'?, Philip C. Roth?

Department of Computer Science, NCSU
2Computer Science and Mathematics Division, ORNL

¥ OAKRIDGE NATIONAL LABORATORY

NC STATE UNIVEHSITY

Department of Computer ce

Problem

® Analyzing I/0 behavior of parallel
applications is difficult

— Due to multi-level layering in
parallel I/0

— Abstractions hide complex
implementation details

— Difficult to analyze
interactions between multiple
layers

— May hide bottleneck due to
poor lower layer implementation

Application

NetCDF

HDF

MPI-10

POSIX /O

Kernel

I/O Behavior Analysis

® Existing approaches and short comings

— Application I/0 kernels (Flash I/0)
+ Exact application I/0 behavior retained
+ Simplify/Eliminate communication & computation
- Analysis of scientific application is difficult
- Requires substantial man-power to maintain

— I/0 event tracing
+ Easy to generate traces by code instrumentation
- Scalability issues due to large traces
- Disturbance in application run due to trace accesses

Our Approach

® Trace-driven approach to analyze I/0O behavior

® Goals
— Extract traces at multiple layers of abstraction
— Maintain structure of events
— Automate trace analysis
— Full replay (independent of original application)
— Scalable
— Lossless compression
— Retain causal order
— Preserve time
— Facilitate customization/integration with other tools

ScalalOTrace Design Overview

® Built on ScalaTrace [IPDPS
'07] to collect MPI-IO &
POSIX I/O traces
— Use MPT profiling layer
for MPI-IO and
communication calls

— Use GNU linker's link time
function interposition
facility for POSIX I/0
calls

— Compress at the task-level
(Intra-node)

— Compress across all nodes
(Inter-node)

MPT Application

" MPI ™~
- Function -
Cl

\'4

MPT Profiling Layer

\V Vv

POSIX Wrappers

A" A"

Task level compression
framework

W

Cross node compression
framework

Intra-Node Compression Example

® Consider the MPI operation stream:

opl, op2, op3, op4, op5, op3, op4, opd

target target target
head head head

target
head

merge
head

target
tail

arget
tail

(w0

target

;

tail

target
tail

target
tail

arget

tail tail

target

Saaac

tail

target

=

op1

op2

op4

opS

merge
head

merge
ta|I

merge erge
tail tail

Intra-Node Compression Example

® Consider the MPI operation stream:

opl, op2, op3, op4, op5, op3, op4, opd

Regular Section Descript

or (RSD)

S

op1

op2

((

op3

op4

w)), iters = 2)

Power Regular Section Descriptor (PRSD)

Example:

op1

(

op2

(

op3

op4

opd

), iters= 2), iters= 10)

Inter-Node Compression Framework

® TInvoked after all computations done (in MPI_Finalize wrapper)

® Merges operation queues produced by task-level framework

® Binary radix tree reduction process

Task 0
Task 1
Task 2
Task 3

» 0p3

» 0p3

» Op6

op1 l«— 0p2 |«
op1 l«— 0p2 |«
op4 «— 0OpS |«
op4 «—{ OpS |«

» Op6

} Match

Inter-Node Compression Framework

® TInvoked after all computations done (in MPI_Finalize wrapper)

® Merges operation queues produced by task-level framework

® Binary radix tree reduction process

Task 0
Task 1
Task 2
Task 3

» 0p3

» Op6

op1 i« Op2 |«
op4 [« Op5S |«
0op4 [« OpS |«

» Op6

} Match

Time Preservation

® Recording absolute timestamps not scalable

® Record delta time
— Computation delta
— MPI delta

® Minor variations prevent exact match

® Aggregate stats (min/max/mean) per op
— Traces lossless for communication parameters
— But lossy for delta-time recording

® Histograms (dynamically balanced)

10

/O Trace Collection

Collecting application access behavior alone is not enough

Interaction between different layers is important
— Isolate application’s behavior at a certain level
— Correlate activities at multiple levels

Idea: reuse infrastructure for lossless I/0 tracing

Collect MPI-IO(higher level) and POSIX I/O (lower level) traces
— Expose multiple layers
— Enable analysis of multi-level traces in a scalable way
— Can be extended to any levels

11

MPI-IO Trace Generation

® Umpire [SC'00] > wrapper generator for MPI profiling layer
— TInitialization wrapper
— Tracing wrapper
— Termination wrapper

® File name compression
— Checkpoint files are written periodically
— File names typically have static and dynamic component
— Merge if static components match

® T/0 calls used repetitively to access shared files using file
offsets

— Encode access pattern into three fields <start, stride, total
number of elements>

12

MPI-IO Trace Generation (cont.)

® Representation of file handles
— Opaque pointers, no repetitive patterns
— Store handle in a buffer, added to buffer on file open
— Encoded with buffer offset during file access

® Support for custom data types (MPI_Type_create_darray)
— Encoding similar to file handles

13

POSIX 1/O Trace Generation

® POSIX I/O belong to lower level in I/0 stack

— Provide details on actual requests made to parallel file
system

— Also some application do not use higher level I/0 libraries
® Enhanced Umpire tool to generate POSIX I/O wrappers

® Code Instrumentation using GNU link time interposition facility
— "--wrap" option used to collect traces for open, write, etc.
— Conftrol redirected to interposition function *__wrap_open”
— Separate library provided for POSIX wrappers.

14

Trace Replay

® ScalaIOTrace supports scalable replay engine
— Reissues MPI-IO and communication calls
— No trace decompression
— Issues calls with original parameters with dummy payloads

® Time preserving replay
— Simulate computation by adding delay

— Pick delta value randomly from histogram +extremes
(min/max)

15

Post-mortem Trace Analysis

Problems in conventional trace analysis
— Requires separate application runs

Replay tool facilitates post-mortem analysis

Generic event handlers provided for all recorded functions
— User specific code can be added to collect information

Facilitates anomaly detection by iterative refinements

16

Experimental Results

Environment
— Jaguar Cray XT4 at NCCS(ORNL)
— AMD 2.1 GHz quadcore
— 86GB of RAM/node

Varied: [
— Number of nodes JAGUAR &

Examined meftrics:
— Trace file size
— Aggregation results from trace analysis

Results for
— Flash I/0 Benchmark
— Parallel Ocean Program (Developed at LANL)

17

Flash 1/0 Benchmark

Simulates I/0 behavior of FLASH 1.00E+08
(adaptive mesh hydrodynamics)
application

Uses parallel HDF5 I/0 library

Log scale: file size [Bytes], 2-1024
nodes

1.00E+07

1.00E+06

1.00E+04

1.00E+03

Two categories: No compression,
Inter-node compression

1.00E+02

Trace file size in bytes

1.00E+01

® Uncompressed traces
— Linear growth

1.00E+00

® Inter-node compressed traces

H Flat
[Inter-node

1.00E+05 1

2

a

I
‘-IIIII

8 16 32 64 128 256 512 1024

Number of nodes

 Almost constant § MPL [POSIX [Comm.|MPE |POSIX |Comm.
mosT constan nodes (10 at|L0at0|at0 |10 |10 |Other
— Due to SPMD prog. STyle 0 Other | Others
V041% [T [99 |8 |6 |99

18

Parallel Ocean Program (POP)

Ocean Circulation Model
— Developed at Los Alamos National Laboratory

No parallel /0O
— Uses NetCDF (in turn uses POSIX I/0)
— Node 0 performs I/0, collects/distributes data from/to
other nodes
Problem size
— 1 degree grid resolution
— Problem size 320x384 grids
— Vary max. # of blocks assigned to each node

Goal: Analyze compression effectiveness of real scientific
applications

19

POP - Trace File Size

Three categories: Flat/Intra-
node/Inter-node L T

M Intra-node
1.00E+10 — [linter-node

Log scale: file size [Bytes], 2-
1024 nodes 1.00E+09

® Vary # of blocks assigned to JEGREEE -
nodes with increasing nodes 1.00E+07 -

® Intra-node compression 1.00E+06
— Linear growth

— Size: order of magnitude
less than flat traces

1.00E+05
1.00E+04

iz 1.00E+03

Trace File Size in bytes

® Similar behavior for inter-
node compressed traces

1.00E+02

1.00E+01

® Imperfect timestep loop oo |
compression | 2 4 8 16 32 64 128 256 512 1024

Number of nodes
— g-convergence problem

20

POP - Post-mortem Analysis

Aggregation results:

® Results for I/0 and comm. Ops
(collective/blocking/non-block)

® Avg. # of operations for
non-zero nodes.

® Blocking calls are I/0O induced
— Parallel I/0 would have
reduced comm. overhead

|

/\

F (00 a[Coll atfBlock. |NBat0[Coll. [Bock JNB |
wdes [0 |0 [latd Other | Other| Other \
T |1589 | 21247 || 129034 31704 21247 |0]| 385380
¢ |15y (2057 | 179284 | pOs9s 21257 (0 [|38se3s
8|17 [212m| |210140 | bosgs2 21277 |0 [| 393393
6 (157 |20317] | 14ado12| 86190 21317 |0 [|447680
0157 | 20397| |8sseds [§86190 (21397 |0 | | 45137
o 1573 |12225 | sswoas | psslon (8575 |0 | |382s02
08 (1573 | 21877 | 4633 (Bsetso 21877 |0 | |441344
2% (1573 (20517 || 470088 (386190 22517 |0 | | 42650
s1 1573|2797 \ 239932 { 386190 | 23797 |0 \414329
04 {1573 | 26357 \2441195/ 386190 (26357 |0 {12485
\/ W4

® Comm. overhead increases due to strong scaling

® Comm. performed in sub-groups

— Avg. non-blocking call for all others > than that of node O

21

Future Work

® TIntroduce user-tunable imprecision

— Exact iteration counts not useful in cases of convergence
problems

— Trregular trace events due to data-dependent conditionals
— Trade off: Trace file size vs. lossless traces

® Enhance trace analysis framework
— Provide configurable options to collect statistical information
without user understanding trace file

22

Conclusion

® Aggressive trace compression
— Near constant size trace file for Flash I/0O
— Two orders of magnitude smaller trace file for POP

® Capability to record traces at several layers
® Framework for post-mortem trace analysis

® Download URL:
— http://moss.csc.ncsu.edu/~mueller/ScalaTrace/

NC STATE UNIVERSITY OAKRIDGE NATIONAL LABORATORY

Department of Computer Science

23

http://moss.csc.ncsu.edu/~mueller/ScalaTrace/

Acknowledgements

® Funded in part by NSF grants 0237570 (Career), 0621470,
0937908, 0429653 and joint faculty appointment between Oak
Ridge National Laboratory and NCSU

® Part of this work was performed under auspices of Oak Ridge
National Laboratory, which is managed by UT-Battelle, LLC under
Contract No. DE-AC05-000R22725

® Used resources of National Centre for Computational Sciences at
ORNL, supported by Office of Science of the Department of
Energy under contract DE-ACO5-000R22725

NC STATE UNIVERSITY OAK RIDGE NATIONAL LABORATORY

Department of Computer Science

24

	Karthik Vijayakumar1, Frank Mueller1, Xiaosong Ma1,2, Philip C. Roth2 1 Department of Computer Science, NCSU 2 Computer Science and Mathematics Division, ORNL
	Problem
	I/O Behavior Analysis
	Our Approach
	ScalaIOTrace Design Overview
	Intra-Node Compression Example
	Slide 7
	Inter-Node Compression Framework
	Slide 9
	Time Preservation
	I/O Trace Collection
	MPI-IO Trace Generation
	MPI-IO Trace Generation (cont.)
	POSIX I/O Trace Generation
	Trace Replay
	Post-mortem Trace Analysis
	Experimental Results
	Flash I/O Benchmark
	Parallel Ocean Program (POP)
	POP – Trace File Size
	POP – Post-mortem Analysis
	Future Work
	Conclusion
	Acknowledgements

