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• Cluster-based storage using TCP/IP over ethernet
• Data striped across many servers

• Client & servers separated by one or more switches

• Client requests a “block” of data and waits

• A block is composed of one or more stripes
• Each storage device serves its own stripe units
• When all block data is received, client begins next request

• Client can experience very poor TCP throughput

Data from servers 
overflows 
switch buffers

Buffer overflow causes 
significant packet loss

Goodput as low as 1-10% 
of client link capacity!

Preventing Incast: Large Switch Buffers

• 
• 

• 

• 

• Reduce minimum retransmision timeout  200ms → 200µs

Conclusions 
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TCP Incast Problem [Phanishayee et. al FAST2008]

Large switch buffers 
delay onset of Incast

Practical solution in use
in the field today

Switches with large 
buffers are expensive

Preventing Incast: Fine grained TCP timeout

• 

• 

• 

• 

• 

48-node cluster using Force10 S50 Switch
Each of N servers respond with 1 MB / N bytes
Achieves maximum throughput for up to 
47 concurrent servers

Is it Effective?

• Is it Safe?

• Is it Practical?

• 
• 
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Num Servers vs Goodput
 (Fixed Block = 1MB, buffer = 64KB (est.), Switch = S50)

200us RTOmin
1ms RTOmin Jiffy

200ms RTOmin (default)

• Current Linux Implementation
• Uses ‘Jiffies’ with

1ms granularity 
• Has 5ms lower 

bound on timeout

• Uses high 
resolution timers

• Our Implementation

• Tracks RTT in µs
• Redifines TCP constants
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Num Servers vs Goodput
 (Fixed Block = 1MB, buffer = 32KB (est.), Switch = Procurve)
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200ms RTOmin

• Deployed two servers 
uploading identical files

• No effect on performance
of bulk-data TCP flows

• Next-generation Datacenters
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• Scaling to thousands of
servers in simulation
with 10Gbps ethernet

• Improved throughput by
adding random delay to 
desynchronize 
retransmissions

TCP Incast throughput collapse can be avoided by
using microsecond-granularity TCP timeouts

• 

Solution presented is practical, effective and safe

Acknowledgement: Brian Mueller and friends at Panasas
• RTO = est. RTO * 

   (1 + RAND(0.5))

• 

• CMU Tech report: CMU-PDL-09-101 February 2009
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Throughput distribution for short and long RTT flows
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