
Solving TCP Incast in Cluster Storage Systems
 Vijay Vasudevan, Amar Phanishayee, Hiral Shah, Elie Krevat, David Andersen, Greg Ganger, Garth Gibson

• Cluster-based storage using TCP/IP over ethernet
• Data striped across many servers

• Client & servers separated by one or more switches

• Client requests a “block” of data and waits

• A block is composed of one or more stripes
• Each storage device serves its own stripe units
• When all block data is received, client begins next request

• Client can experience very poor TCP throughput

Data from servers
overflows
switch buffers

Buffer overflow causes
significant packet loss

Goodput as low as 1-10%
of client link capacity!

Preventing Incast: Large Switch Buffers

•
•

•

•

• Reduce minimum retransmision timeout 200ms → 200µs

Conclusions

0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

0 5 10 15 20 25 30 35

G
oo

dp
ut

 (M
bp

s)

Number of Servers

Average Goodput VS # Servers
(SRU = 256KB)

HP Procurve 2848

TCP Incast Problem [Phanishayee et. al FAST2008]

Large switch buffers
delay onset of Incast

Practical solution in use
in the field today

Switches with large
buffers are expensive

Preventing Incast: Fine grained TCP timeout

•

•

•

•

•

48-node cluster using Force10 S50 Switch
Each of N servers respond with 1 MB / N bytes
Achieves maximum throughput for up to
47 concurrent servers

Is it Effective?

• Is it Safe?

• Is it Practical?

•
•

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 5 10 15 20 25 30 35 40 45

G
oo

dp
ut

 (M
bp

s)
Number of Servers

Num Servers vs Goodput
 (Fixed Block = 1MB, buffer = 64KB (est.), Switch = S50)

200us RTOmin
1ms RTOmin Jiffy

200ms RTOmin (default)

• Current Linux Implementation
• Uses ‘Jiffies’ with

1ms granularity
• Has 5ms lower

bound on timeout

• Uses high
resolution timers

• Our Implementation

• Tracks RTT in µs
• Redifines TCP constants

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 2 4 6 8

 1
0

 1
2

 1
4

 1
6

G
o

o
d

p
u

t
(M

b
p

s)

Number of Servers

Num Servers vs Goodput
 (Fixed Block = 1MB, buffer = 32KB (est.), Switch = Procurve)

200us RTOmin
1ms RTOmin Jiffy

200ms RTOmin

• Deployed two servers
uploading identical files

• No effect on performance
of bulk-data TCP flows

• Next-generation Datacenters

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 32 64 128 256 512 1024 2048

G
o
o
d
p
u
t
(M

b
p
s)

Number of Servers

Average Goodput VS # Servers
 (Block size = 40MB, buffer = 32KB, rtt = 20us)

200us RTOmin
20us RTOmin

20us RTOmin + RandDelay

• Scaling to thousands of
servers in simulation
with 10Gbps ethernet

• Improved throughput by
adding random delay to
desynchronize
retransmissions

TCP Incast throughput collapse can be avoided by
using microsecond-granularity TCP timeouts

•

Solution presented is practical, effective and safe

Acknowledgement: Brian Mueller and friends at Panasas
• RTO = est. RTO *

 (1 + RAND(0.5))

•

• CMU Tech report: CMU-PDL-09-101 February 2009

 0

 20

 40

 60

 80

 100

 1 10 100

%
 sa

m
pl

es
 (w

ith
 K

bp
s <

=
x)

Throughout (Kbps)

200ms RTOmin (over 200ms RTT)
200ms RTOmin (sub 200ms RTT)
200us RTOmin (over 200ms RTT)
200us RTOmin (sub 200ms RTT)

Throughput distribution for short and long RTT flows

0

100

200

300

400

500

600

700

800

900

1000

1 2 4 8 16 32 64 128

G
oo

d
p

u
t (

M
b

p
s)

Number of Servers

Average Goodput VS # Servers
(SRU = 256KB)

32K buf
64K buf

128K buf
256K buf
512K buf

1024K buf

1

2

3

4

Stripe 1 Stripe 2 Stripe 3 Stripe 4

Server Request
Unit

Data BlockStripe Unit

Servers

Switch

Client

SVD09

