a2 AIST

Towards A Petascale RDF Data Processing Framework
Using Pig and Hadoop

Yusuke Tanimura, Akiyoshi Matono, Steven Lynden, Isao Kojima
National Institute of Advanced Industrial Science and Technology (AIST), Japan
{yusuke.tanimura, a.matono, steven.lynden}@aist.go.jp, kojima@ni.aist.go.jp

Proposed Scalable and Flexible RDF Data
Processing Framework on A Single Site

Background
What is RDF?

B RDF stands for Resource Description Framework, which is a W3C
standard for describing Web documents and resources from the real
world - people, organizations, things and so on.

Scalable architecture: A Pig and Hadoop-based system (Distributed
File System and MapReduce model)

RDF extensions on top of the general data processing framework
(Pig/Hadoop):

® The extension involves storage schema and query optimization to
make query execution faster.

B RDF data consists of a set of triples (subject, predicate and object)
and forms a graph, which can represent knowledge networks with
RDF Schema and OWL (Web Ontology Language).

dc:creator

® The extension provides an interface of the inference operations

Example of RDF triples as Pig Latin language, with internal query optimization.

1) aist:article dc:creator aist:suzuki . ,
) RDF Data Processing Interface

2) aistsuzuki foafname “Suzuki” . L= O OO0

foaf:nam?/ \:oaf:age 3) aistsuzuki foaf.age “30” . __________________ SQL __________________ SPARQL, etc __________________________
“Suzuki” “30” [Database operations provided by Pig h [RDF special operations\ (Custom data processing;
000 ioaoi User—defined@

N iU iU y,

The size and number of RDF repositories is increasing. . Pig Query and Processing Engine i ~

Current situation (MB ~ GB): i Logical Optibizer |]
® W3C SWEO (Semantic Web Education and Outreach) Linking > Shveical O — - i <
Open Data community reported in May, 2009, that the community U <ﬂm—l—>)

interlinked over 4.7 billion RDF triples with about 142 million links.

MapReduce Execution: Framework

® The DBpedia knowledge base describes more than 2.6 million
things using 274 millions’ RDF triples and the size is about 67GB.

[Storage Schema J

Near future: i Distributed File System : ’

® The number of the RDF triples and the number of the RDF
repositories will increase more. Pure RDF data repository will be
GB ~ TB scale.

® The contents repository which stores data and its metadata (RDF
data) will be TB ~ PB scale.

Efficient RDF Data Access

B Defining storage schema

v A basic file structure of the RDF triples, intermediate results and
iIndices

System requirements for RDF data processing

B Sufficient computing power for RDF queries (graph pattern
matching)

B Flexible user interface for RDF specific queries or rule-based
inference

» They are not achieved by existing relational databases.

Project Goal

Develop core technologies for building a scalable and distributed
knowledge base using RDF:

® A user side data integration system, which joins data from multiple
RDF repositories in an efficient manner

® A data provider side single scalable RDF repository system

Data integration and query processing

Manage

Data source

uuuuuuuuuuuuuuu

Knowledge Knowledge
Find new knowledge \ / \
Knowledge
\ Knowledge
A petabyte-scale RDF repository S \
on a single data center TN 09 TUS—— Knowledge

RDF querying Interlinked knowledge bases
& analyzing over Clouds
Optimization F
MapReduce < >
vV

Distributed File System

» Based on Hadoop’'s MapFile format

v" Data partitioning (File partitioning and distribution on DFS)
» Vertical Partitioning

v'Structure of indices including inferred data

B Implementing an RDF data loader using the schema

The system provides RDFLoader() as a built-in function of Pig. The
function takes a SPARQL filtering statement as an argument, and
omits reading unnecessary data from DFS. The LOAD command
using the function looks like below.

a = LOAD ‘DBpedia’ RDFLoader(‘?predicate = http://www.w3.org/");

Reasoning Support

The system provides the RDF-INFER command, which is able to infer
new RDF triples by processing a set of user-defined rules. The
command looks like below.

b = RDF-INFER USING RDFRuleBase(‘myrule-1");

The system internally optimizes the RDF-INFER operation. For
example of the transitive closure, the operation may involve multi-
stages self-joins. We plan to implement adaptive techniques; choosing
the best join algorithm implemented with MapReduce, using join
indices or not, and so on. The optimization is expected to reduce large
amount of overheads of the MapReduce execution.

A part of this work is supported by Strategic Information and Communications R&D
Promotion Programme (SCOPE) of the Japanese Ministry of Internal Affairs.

