
Towards A Petascale RDF Data Processing Framework

Using Pig and Hadoop

Yusuke Tanimura, Akiyoshi Matono, Steven Lynden, Isao Kojima

National Institute of Advanced Industrial Science and Technology (AIST), Japan

{yusuke.tanimura, a.matono, steven.lynden}@aist.go.jp, kojima@ni.aist.go.jp

Scalable architecture: A Pig and Hadoop-based system (Distributed

File System and MapReduce model)

RDF extensions on top of the general data processing framework

(Pig/Hadoop):

� The extension involves storage schema and query optimization to

make query execution faster.

� The extension provides an interface of the inference operations

as Pig Latin language, with internal query optimization.

Efficient RDF Data Access

� Defining storage schema

� A basic file structure of the RDF triples, intermediate results and

indices

� Based on Hadoop’s MapFile format

� Data partitioning (File partitioning and distribution on DFS)

� Vertical Partitioning

�Structure of indices including inferred data

� Implementing an RDF data loader using the schema

The system provides RDFLoader() as a built-in function of Pig. The

function takes a SPARQL filtering statement as an argument, and

omits reading unnecessary data from DFS. The LOAD command

using the function looks like below.

Reasoning Support

The system provides the RDF-INFER command, which is able to infer

new RDF triples by processing a set of user-defined rules. The

command looks like below.

The system internally optimizes the RDF-INFER operation. For

example of the transitive closure, the operation may involve multi-

stages self-joins. We plan to implement adaptive techniques; choosing

the best join algorithm implemented with MapReduce, using join

indices or not, and so on. The optimization is expected to reduce large

amount of overheads of the MapReduce execution.

A part of this work is supported by Strategic Information and Communications R&D

Promotion Programme (SCOPE) of the Japanese Ministry of Internal Affairs.

Knowledge

Knowledge
Knowledge

Knowledge

Knowledge Knowledge

Interlinked knowledge bases

over Clouds

A petabyte-scale RDF repository

on a single data center

MapReduce

Distributed File System

RDF querying

& analyzing

Find new knowledge

Optimization

Data integration and query processing

Knowledge

Knowledge
Knowledge

Knowledge

Knowledge Knowledge

Interlinked knowledge bases

over Clouds

A petabyte-scale RDF repository

on a single data center

MapReduce

Distributed File System

RDF querying

& analyzing

Find new knowledge

Optimization

Data integration and query processing

Proposed Scalable and Flexible RDF Data

Processing Framework on A Single Site
Background

What is RDF?

� RDF stands for Resource Description Framework, which is a W3C

standard for describing Web documents and resources from the real

world - people, organizations, things and so on.

� RDF data consists of a set of triples (subject, predicate and object)

and forms a graph, which can represent knowledge networks with

RDF Schema and OWL (Web Ontology Language).

The size and number of RDF repositories is increasing.

Current situation (MB ~ GB):

� W3C SWEO (Semantic Web Education and Outreach) Linking

Open Data community reported in May, 2009, that the community

interlinked over 4.7 billion RDF triples with about 142 million links.

� The DBpedia knowledge base describes more than 2.6 million

things using 274 millions’ RDF triples and the size is about 67GB.

Near future:

� The number of the RDF triples and the number of the RDF

repositories will increase more. Pure RDF data repository will be

GB ~ TB scale.

� The contents repository which stores data and its metadata (RDF

data) will be TB ~ PB scale.

System requirements for RDF data processing

� Sufficient computing power for RDF queries (graph pattern

matching)

� Flexible user interface for RDF specific queries or rule-based

inference

They are not achieved by existing relational databases.

Project Goal

Develop core technologies for building a scalable and distributed

knowledge base using RDF:

� A user side data integration system, which joins data from multiple

RDF repositories in an efficient manner

� A data provider side single scalable RDF repository system

a = LOAD ‘DBpedia’ RDFLoader(‘?predicate = http://www.w3.org/’);

b = RDF-INFER USING RDFRuleBase(‘myrule-1’);

aist:suzuki

dc:creator

“Suzuki” “30”

foaf:agefoaf:name

1) aist:article dc:creator aist:suzuki .

2) aist:suzuki foaf:name “SuzukiSuzukiSuzukiSuzuki” .

3) aist:suzuki foaf:age “30303030” .

aist:article

Example of RDF triples

aist:suzuki

dc:creator

“Suzuki” “30”

foaf:agefoaf:name

1) aist:article dc:creator aist:suzuki .

2) aist:suzuki foaf:name “SuzukiSuzukiSuzukiSuzuki” .

3) aist:suzuki foaf:age “30303030” .

aist:article

Example of RDF triples

Pig Query and Processing Engine

MapReduce Execution Framework

Distributed File System

Storage Schema

Database operations provided by Pig RDF special operations

SPARQL, etc.

RDF Data Processing Interface

Join Union Selection InferRDFLoad

Custom data processing

User-defined (UDF)

SQL

Logical Optimizer

Physical Optimizer

