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Scalable architecture: A Pig and Hadoop-based system (Distributed 

File System and MapReduce model)

RDF extensions on top of the general data processing framework

(Pig/Hadoop):

� The extension involves storage schema and query optimization to 

make query execution faster.

� The extension provides an interface of the inference operations 

as Pig Latin language, with internal query optimization.

Efficient RDF Data Access

� Defining storage schema

� A basic file structure of the RDF triples, intermediate results and 

indices

� Based on Hadoop’s MapFile format

� Data partitioning (File partitioning and distribution on DFS)

� Vertical Partitioning

�Structure of indices including inferred data

� Implementing an RDF data loader using the schema

The system provides RDFLoader() as a built-in function of Pig.  The 

function takes a SPARQL filtering statement as an argument, and 

omits reading unnecessary data from DFS.  The LOAD command 

using the function looks like below. 

Reasoning Support

The system provides the RDF-INFER command, which is able to infer 

new RDF triples by processing a set of user-defined rules.  The 

command looks like below.

The system internally optimizes the RDF-INFER operation.  For 

example of the transitive closure, the operation may involve multi-

stages self-joins.  We plan to implement adaptive techniques; choosing 

the best join algorithm implemented with MapReduce, using join 

indices or not, and so on.  The optimization is expected to reduce large 

amount of overheads of the MapReduce execution.

A part of this work is supported by Strategic Information and Communications R&D 

Promotion Programme (SCOPE) of the Japanese Ministry of Internal Affairs.
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Proposed Scalable and Flexible RDF Data

Processing Framework on A Single Site
Background

What is RDF?

� RDF stands for Resource Description Framework, which is a W3C 

standard for describing Web documents and resources from the real 

world - people, organizations, things and so on.

� RDF data consists of a set of triples (subject, predicate and object) 

and forms a graph, which can represent knowledge networks with 

RDF Schema and OWL (Web Ontology Language).

The size and number of RDF repositories is increasing.

Current situation (MB ~ GB):

� W3C SWEO (Semantic Web Education and Outreach) Linking 

Open Data community reported in May, 2009, that the community 

interlinked over 4.7 billion RDF triples with about 142 million links.

� The DBpedia knowledge base describes more than 2.6 million 

things using 274 millions’ RDF triples and the size is about 67GB.

Near future:

� The number of the RDF triples and the number of the RDF 

repositories will increase more.  Pure RDF data repository will be 

GB ~ TB scale.

� The contents repository which stores data and its metadata (RDF

data) will be TB ~ PB scale.

System requirements for RDF data processing

� Sufficient computing power for RDF queries (graph pattern 

matching)

� Flexible user interface for RDF specific queries or rule-based 

inference

They are not achieved by existing relational databases. 

Project Goal

Develop core technologies for building a scalable and distributed

knowledge base using RDF:

� A user side data integration system, which joins data from multiple 

RDF repositories in an efficient manner

� A data provider side single scalable RDF repository system

a = LOAD ‘DBpedia’ RDFLoader(‘?predicate = http://www.w3.org/ ....’);

b = RDF-INFER USING RDFRuleBase(‘myrule-1’);
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Example of RDF triples
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