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Introduction
• Data is growing fast

• 10-100x faster than compute speeds

• moving data becomes dominant

• POSIX IO does not scale
• 45 years ago: 100MB of data at high end

• Now: up to 1 billion times more data

• Middleware tries to make up for limitations

• Performance price of POSIX IO is high
• Workload-specific interposition layers: 

almost 1,000 x speed-up

• Middleware and Interposition layers

• Either not fully exploit storage architecture, or

• Statically encode workload-architecture mapping

• Parallel to early database history
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Why now?

1. Mature HPC Middleware APIs: 
• NetCDF, HDF5, MPI IO, ...

• Established abstractions above POSIX IO

2. Big data increasingly forces out-of-core data 
management

3. Advances in auto-tuning of database systems

4. Advances in end-to-end performance management
• Scheduling of competing data management activities

5. Advances in parallel file system scalability
• via greater intelligence at storage nodes
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Parser Module

• Repository of format-specific parsers

• Parser creates trees

• Common semi-structured data model
• Same abstract interface to different formats

• Structural indices into byte stream files

• Formulation vs Evaluation of queries:
• Formulation: based on semi-structured data model

• Evaluation: lazy, parsing of entire file not required

• Optimized/scalable evaluation mechanisms ...
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Declarative Queries

• Declarative “query” expression: 
• What to retrieve or update, not how

• As opposed to procedural querying

• Algebraic operators:
• Input and output is in semi-structured data model

• Leverage existing query languages (XPath, ...)

• Include operators of common formats (HDF5, NetCDF, ...)

• Complex expressions:
• Retrieve/update combinations
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Declarative Access: Example

• Path access operator applied on a bib file with

publication[/title contains ‘file’ ‘systems’]/abstract

• Return abstracts of publications that contain the 
word “file” or “system” in the title

• Update operator applied on bib file with

publication[/title contains ‘file’]/tags = ‘file’

• Tag publications with “file” that contain the word 
“file” in the title
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Query Optimization

• Query Executor:
• Input: expression of logical operators

• Output: best query plan using physical operators

• Via: rewrite rules, cost model

• Cost Model: accounts for layout and statistics about data

• Fragmented Parsing:
• Physical operators use file metadata to parse only what is 

needed

• Indexing of Keywords and File Structure

• Hybrid expressions: logical and physical operations

• Trying to avoid need to bypass Damasc

Parser

Query Executor Cache and 
Indices
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Views

• On-the-fly computation of file(s)

• First class citizen:
• Views can be queried and/or updated

• Views can be based on other views

• Query “fusing”:
• Optimize query against view + query defining view

• Logical Independence:
• Views shield applications from physical format changes

Query Executor

File Views
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Service 1:
Self-Organizable Indexing

• Index Cost vs Benefit:
• Essential for performance

• Cost of index maintenance

• Automatic index creation and destruction:
• Based on recent query patterns

• Based on index interactions

• Hybrid, partial indexing: e.g. one file has
• inverted-list index for keywords in titles

• path index

• some lazy indexing

Query Executor Automatic 
Indexer

Cache and 
Indices
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Service 2:
Provenance Tracking

• End-to-end provenance tracking
• From views to underlying files, and 

• back to (other) views

• semantic objects (e.g. matrix)

• Automatic bridging of observed and disclosed provenance 
collection
• Observed provenance collection on physical level

• Disclosed provenance by applications on logical level
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Realization in a Parallel File System

• 1st step: middleware
• All global Damasc data structures shared via POSIX IO

• Limited data movement savings

• 2nd step: Ceph extension
• Distributed query executor, parser, indexer

• Damasc spans storage clients and servers

• Leveraging Ceph’s intelligent OSDs

• Format-aligned striping
• Striping strategy based on structure, not bytes

• Adaptive mapping to distributed data structures

• Leveraging Ceph’s scalable metadata cluster

14

14



Applications & Damasc

• Applications rely on higher-level APIs:
• NetCDF, HDF-5, ...

• Declarative Damasc interface
• Simplification for middleware libraries

• Cross-workload-adaptive optimization of the 
storage of particular data sets w/ multiple formats

• Views for overcoming bottlenecks
• Example: View mapping one file to many files plus 

automatic indexing (similar to PLFS)
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Conclusions

• Moving data becomes dominant overhead

• Middleware provides much-needed 
functionality but not performance

• Damasc adds data management layer to FS
• Additional semantic information for storage layer

• Facilitate in-place processing on storage nodes

• Eventually: full-scale distributed processing
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Thank you

• Questions and comments?

• Contact: carlosm@cs.ucsc.edu

• Please read our paper!
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