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Introduction

Data is growing fast
* |0-100x faster than compute speeds

* moving data becomes dominant

POSIX 1O does not scale
* 45 years ago: |00MB of data at high end
* Now:up to | billion times more data

* Middleware tries to make up for limitations

Performance price of POSIX IO is high

* Workload-specific interposition layers:
almost 1,000 x speed-up

Middleware and Interposition layers
* Either not fully exploit storage architecture, or
* Statically encode workload-architecture mapping

* Parallel to early database history
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Why now!?

|. Mature HPC Middleware APIs:
e NetCDF HDF5, MPI 10, ...
e Established abstractions above POSIX IO

2. Big data increasingly forces out-of-core data
management

3. Advances in auto-tuning of database systems

4. Advances in end-to-end performance management

* Scheduling of competing data management activities

5. Advances in parallel file system scalability

* via greater intelligence at storage nodes
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* Repository of format-specific parsers

* Parser creates trees

e Common semi-structured data model
e Same abstract interface to different formats

 Structural indices into byte stream files

* Formulation vs Evaluation of queries:
* Formulation: based on semi-structured data model

* Evaluation: lazy, parsing of entire file not required

* Optimized/scalable evaluation mechanisms ...
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* Declarative “query” expression: |Q“ery ExeC“t°r|

 What to retrieve or update, not how

* As opposed to procedural querying

* Algebraic operators:
* Input and output is in semi-structured data model

* Leverage existing query languages (XPath, ...)

* Include operators of common formats (HDF5, NetCDEF, ...)

* Complex expressions:

* Retrieve/update combinations



Declarative Access: Example

* Path access operator applied on a bib file with

publication[/title contains ‘file’ ‘systems’]/abstract

* Return abstracts of publications that contain the
word “file” or “system’ in the title

* Update operator applied on bib file with
publication[/title contains ‘file’]/tags = ‘file’

* Tag publications with “file” that contain the word
“file” in the title
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* Input: expression of logical operators

* Output: best query plan using physical operators

* Via: rewrite rules, cost model

Cost Model: accounts for layout and statistics about data

Fragmented Parsing:

* Physical operators use file metadata to parse only what is
needed

Indexing of Keywords and File Structure

Hybrid expressions: logical and physical operations

* Trying to avoid need to bypass Damasc

|0
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Vi EWS |Query Executor|

« On-the-fly computation of file(s) il views |

* First class citizen:

* Views can be queried and/or updated

* Views can be based on other views
e Query “fusing’:

* Optimize query against view + query defining view
* Logical Independence:

* Views shield applications from physical format changes
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SerVice I: Query Executor
Self-Organizable Indexing

* Index Cost vs Benefit:
* Essential for performance

e Cost of index maintenance

e Automatic index creation and destruction:
* Based on recent query patterns

 Based on index interactions

* Hybrid, partial indexing: e.g. one file has
* inverted-list index for keywords in titles
* path index

* some lazy indexing

Cache and
Indices

Automatic
Indexer
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Tracker Indices

Provenance Tracking _/}\ (}\

Parser ‘ File Views \

Read/Write

Requests

* End-to-end provenance tracking | Byte Stream Interface |

* From views to underlying files, and
* back to (other) views
* semantic objects (e.g. matrix)
* Automatic bridging of observed and disclosed provenance
collection
* Observed provenance collection on physical level

* Disclosed provenance by applications on logical level
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Realization in a Parallel File System

* |5t step: middleware
* All global Damasc data structures shared via POSIX IO

* Limited data movement savings

« 2" step: Ceph extension

 Distributed query executor, parser, indexer
* Damasc spans storage clients and servers
* Leveraging Ceph’s intelligent OSDs

* Format-aligned striping
* Striping strategy based on structure, not bytes

* Adaptive mapping to distributed data structures

* Leveraging Ceph’s scalable metadata cluster
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Applications & Damasc

* Applications rely on higher-level APIs:
* NetCDF, HDF-5, ...

e Declarative Damasc interface
 Simplification for middleware libraries

* Cross-workload-adaptive optimization of the
storage of particular data sets w/ multiple formats

* Views for overcoming bottlenecks

* Example:View mapping one file to many files plus
automatic indexing (similar to PLFS)
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Conclusions

* Moving data becomes dominant overhead

* Middleware provides much-needed
functionality but not performance

* Damasc adds data management layer to FS
» Additional semantic information for storage layer

* Facilitate in-place processing on storage nodes

* Eventually: full-scale distributed processing
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Thank you

* Questions and comments!?

* Contact: carlosm(@cs.ucsc.edu

* Please read our paper!
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