
Fusing 
Data Management Services 

with File Systems

Scott Brandt
Carlos Maltzahn

Neoklis Polyzotis
Wang-Chiew Tan

ISSDM, PDSI,
Systems Research Lab,
Database Systems Group
UC Santa Cruz

(A Vision by Database & File System Researchers)

1

1



Introduction
• Data is growing fast

• 10-100x faster than compute speeds

• moving data becomes dominant

• POSIX IO does not scale
• 45 years ago: 100MB of data at high end

• Now: up to 1 billion times more data

• Middleware tries to make up for limitations

• Performance price of POSIX IO is high
• Workload-specific interposition layers: 

almost 1,000 x speed-up

• Middleware and Interposition layers

• Either not fully exploit storage architecture, or

• Statically encode workload-architecture mapping

• Parallel to early database history
2

2



Damasc

3

Application

Byte Stream Interface

POSIX IO
interface

Middleware

3



Damasc

4

Application

Simplified Middleware

Byte Stream Interface

POSIX IO
interface

Declarative Interface

Damasc
interface

Logical Data Model Views

4



Why now?

1. Mature HPC Middleware APIs: 
• NetCDF, HDF5, MPI IO, ...

• Established abstractions above POSIX IO

2. Big data increasingly forces out-of-core data 
management

3. Advances in auto-tuning of database systems

4. Advances in end-to-end performance management
• Scheduling of competing data management activities

5. Advances in parallel file system scalability
• via greater intelligence at storage nodes

5

5



Application

Byte Stream Interface

Parser Module

Query ExecutorProvenance 
Tracker

Automatic 
Indexer

Cache and 
Indices

Damasc
Interface

Declarative
Queries

HDF5 
extents

XML
extents

Application

Rewritten 
HDF5 
API

Library 
Calls

File Views

POSIX
FS Interface

or other lower-level
interface

Read/Write
Requests

Damasc

6

...

6



Application

Byte Stream Interface

Parser Module

Query ExecutorProvenance 
Tracker

Automatic 
Indexer

Cache and 
Indices

Damasc
Interface

Declarative
Queries

HDF5 
extents

XML
extents

Application

Rewritten 
HDF5 
API

Library 
Calls

File Views

POSIX
FS Interface

or other lower-level
interface

Read/Write
Requests

Damasc

Parser exposes data in 
structured logical model 

6

...

6



Application

Byte Stream Interface

Parser Module

Query ExecutorProvenance 
Tracker

Automatic 
Indexer

Cache and 
Indices

Damasc
Interface

Declarative
Queries

HDF5 
extents

XML
extents

Application

Rewritten 
HDF5 
API

Library 
Calls

File Views

POSIX
FS Interface

or other lower-level
interface

Read/Write
Requests

Damasc

Parser exposes data in 
structured logical model 

Query Executor 
transparently optimizes 

retrieval of requested data 

6

...

6



Application

Byte Stream Interface

Parser Module

Query ExecutorProvenance 
Tracker

Automatic 
Indexer

Cache and 
Indices

Damasc
Interface

Declarative
Queries

HDF5 
extents

XML
extents

Application

Rewritten 
HDF5 
API

Library 
Calls

File Views

POSIX
FS Interface

or other lower-level
interface

Read/Write
Requests

Damasc

Parser exposes data in 
structured logical model 

Query Executor 
transparently optimizes 

retrieval of requested data 

File Views computes files 
on-the-fly based on query 

expressions

6

...

6



Application

Byte Stream Interface

Parser Module

Query ExecutorProvenance 
Tracker

Automatic 
Indexer

Cache and 
Indices

Damasc
Interface

Declarative
Queries

HDF5 
extents

XML
extents

Application

Rewritten 
HDF5 
API

Library 
Calls

File Views

POSIX
FS Interface

or other lower-level
interface

Read/Write
Requests

Damasc

Parser exposes data in 
structured logical model 

Query Executor 
transparently optimizes 

retrieval of requested data 

File Views computes files 
on-the-fly based on query 

expressions

Service 1: 
Self-organizable 

indexing 

Service 2: 
Provenance 

tracking 

6

...

6



Parser Module

• Repository of format-specific parsers

• Parser creates trees

• Common semi-structured data model
• Same abstract interface to different formats

• Structural indices into byte stream files

• Formulation vs Evaluation of queries:
• Formulation: based on semi-structured data model

• Evaluation: lazy, parsing of entire file not required

• Optimized/scalable evaluation mechanisms ...

7

Byte Stream Interface

Parser Module

Read/Write
Requests

7



Declarative Queries

• Declarative “query” expression: 
• What to retrieve or update, not how

• As opposed to procedural querying

• Algebraic operators:
• Input and output is in semi-structured data model

• Leverage existing query languages (XPath, ...)

• Include operators of common formats (HDF5, NetCDF, ...)

• Complex expressions:
• Retrieve/update combinations

Application

Query Executor

Declarative
Queries

Application

Rewritten 
HDF5 
API

Library 
Calls

8

8



Declarative Access: Example

• Path access operator applied on a bib file with

publication[/title contains ‘file’ ‘systems’]/abstract

• Return abstracts of publications that contain the 
word “file” or “system” in the title

• Update operator applied on bib file with

publication[/title contains ‘file’]/tags = ‘file’

• Tag publications with “file” that contain the word 
“file” in the title

9

9



Query Optimization

• Query Executor:
• Input: expression of logical operators

• Output: best query plan using physical operators

• Via: rewrite rules, cost model

• Cost Model: accounts for layout and statistics about data

• Fragmented Parsing:
• Physical operators use file metadata to parse only what is 

needed

• Indexing of Keywords and File Structure

• Hybrid expressions: logical and physical operations

• Trying to avoid need to bypass Damasc

Parser

Query Executor Cache and 
Indices

10

10



Views

• On-the-fly computation of file(s)

• First class citizen:
• Views can be queried and/or updated

• Views can be based on other views

• Query “fusing”:
• Optimize query against view + query defining view

• Logical Independence:
• Views shield applications from physical format changes

Query Executor

File Views

11

11



Service 1:
Self-Organizable Indexing

• Index Cost vs Benefit:
• Essential for performance

• Cost of index maintenance

• Automatic index creation and destruction:
• Based on recent query patterns

• Based on index interactions

• Hybrid, partial indexing: e.g. one file has
• inverted-list index for keywords in titles

• path index

• some lazy indexing

Query Executor Automatic 
Indexer

Cache and 
Indices

12

12



Byte Stream Interface

Parser

Query ExecutorProvenance 
Tracker

Cache and 
Indices

File Views

Read/Write
Requests

Service 2:
Provenance Tracking

• End-to-end provenance tracking
• From views to underlying files, and 

• back to (other) views

• semantic objects (e.g. matrix)

• Automatic bridging of observed and disclosed provenance 
collection
• Observed provenance collection on physical level

• Disclosed provenance by applications on logical level

13

13



Realization in a Parallel File System

• 1st step: middleware
• All global Damasc data structures shared via POSIX IO

• Limited data movement savings

• 2nd step: Ceph extension
• Distributed query executor, parser, indexer

• Damasc spans storage clients and servers

• Leveraging Ceph’s intelligent OSDs

• Format-aligned striping
• Striping strategy based on structure, not bytes

• Adaptive mapping to distributed data structures

• Leveraging Ceph’s scalable metadata cluster

14

14



Applications & Damasc

• Applications rely on higher-level APIs:
• NetCDF, HDF-5, ...

• Declarative Damasc interface
• Simplification for middleware libraries

• Cross-workload-adaptive optimization of the 
storage of particular data sets w/ multiple formats

• Views for overcoming bottlenecks
• Example: View mapping one file to many files plus 

automatic indexing (similar to PLFS)

15

15



Conclusions

• Moving data becomes dominant overhead

• Middleware provides much-needed 
functionality but not performance

• Damasc adds data management layer to FS
• Additional semantic information for storage layer

• Facilitate in-place processing on storage nodes

• Eventually: full-scale distributed processing

16

16



Thank you

• Questions and comments?

• Contact: carlosm@cs.ucsc.edu

• Please read our paper!

17

17

mailto:carlosm@cs.ucsc.edu
mailto:carlosm@cs.ucsc.edu

