Fusing
Data Management Services
with File Systems

(A Vision by Database & File System Researchers)

Scott Brandt
Carlos Maltzahn

Neoklis Polyzotis
Wang-Chiew Tan

ISSDM, PDSI,

Systems Research Lab,
Database Systems Group
UC Santa Cruz

Introduction

Data is growing fast
* |0-100x faster than compute speeds

* moving data becomes dominant

POSIX 1O does not scale
* 45 years ago: |00MB of data at high end
* Now:up to | billion times more data

* Middleware tries to make up for limitations

Performance price of POSIX IO is high

* Workload-specific interposition layers:
almost 1,000 x speed-up

Middleware and Interposition layers
* Either not fully exploit storage architecture, or
* Statically encode workload-architecture mapping

* Parallel to early database history
2

Damasc

Application

l

Middleware

lv ______________ POSIX 10O
interface

Byte Stream Interface

Damasc

Application

l

Simplified Middleware

_L Damasc
--------- . ETEETEREE RS interface

Declarative Interface

Logical Data Model Views

POSIX IO
interface

Byte Stream Interface

Why now!?

|. Mature HPC Middleware APIs:
e NetCDF HDF5, MPI 10, ...
e Established abstractions above POSIX IO

2. Big data increasingly forces out-of-core data
management

3. Advances in auto-tuning of database systems

4. Advances in end-to-end performance management

* Scheduling of competing data management activities

5. Advances in parallel file system scalability

* via greater intelligence at storage nodes

Damasc

Application

Library
Calls

Application

Rewritten _
HDF5 Declar_atlve
API Queries
Interface
Provenance Cache and | | Automatic
Tracker Indices Indexer
Parser Module ‘ File Views \
Read/Write
Requests POSIX

FS Interface

l Byte Stream Interface \ or other lower-level
interface

HDF5 eee XML
extents extents

Damasc

Application Application

Library
Calls
Rewritten _
HDF5 Declargtlve
API Queries
Interface
Provenance Cache and | | Automatic
Tracker Indices Indexer
| | File Views \
Read/Write
Parser exposes data in Requests POSIX

FS Interface

‘ Byte Stream Interface \ or other lower-level
interface
[11111111 i 11111111

HDF5 eee XML
extents extents

structured logical model

Damasc

Query Executor Rewritten
transparently optimizes HDFS

Declarative
Queries

retrieval of requested data Damasc
Interface
Provenance Cache and | | Automatic
Tracker Indices Indexer
Bdarser Module | File Views '
Read/Write
Parser exposes data in Requests POSIX

FS Interface

' Byte Stream Interface . or other lower-level
interface

HDF5 eee XML
extents extents

structured logical model

Damasc

Query Executor Rewritten _
Sy HDF5 Declarative
transparently optimizes Queries
retrieval of requested data Damasc
Interface

Automatic

Cache and
Indices

-/./:>\- ./:>\- File Views computes files

on-the-fly based on query
File Views expressions

Provenance
Tracker

Indexer

Barser Module

Read/Write
Requests

POSIX

Parser exposes data in

FS Interface

structured logical model
' Byte Stream Interface ' or other lower-level
interface

HDF5 eee XML
extents extents

Damasc

Service |:
Self-organizable

indexing

Query Executor Rewritten
transparently optimizes HDFS
retrieval of requested data

Declarative
Queries

Damasc
Interface

Automatic
Indexer

Cache and
Indices

Provenance
Tracker

Service 2:
Provenance

trackin T
5 File Views computes files

on-the-fly based on query
expressions

Barser Module File Views

Read/Write
Requests

Parser exposes data in
structured logical model

POSIX

FS Interface

l Byte Stream Interface | or other lower-level
interface

HDF5 eee XML
extents extents

Parser Module {_}}\

Parser Module

Read/Write
Requests

‘ Byte Stream Interface \

* Repository of format-specific parsers

* Parser creates trees

e Common semi-structured data model
e Same abstract interface to different formats

 Structural indices into byte stream files

* Formulation vs Evaluation of queries:
* Formulation: based on semi-structured data model

* Evaluation: lazy, parsing of entire file not required

* Optimized/scalable evaluation mechanisms ...

7

Declarative Queries

Application Application

Library
Calls
Rewritten _
HDF5 Declargtlve
API Queries

__—_S‘________

* Declarative “query” expression: |Q“ery ExeC“t°r|

 What to retrieve or update, not how

* As opposed to procedural querying

* Algebraic operators:
* Input and output is in semi-structured data model

* Leverage existing query languages (XPath, ...)

* Include operators of common formats (HDF5, NetCDEF, ...)

* Complex expressions:

* Retrieve/update combinations

Declarative Access: Example

* Path access operator applied on a bib file with

publication[/title contains ‘file’ ‘systems’]/abstract

* Return abstracts of publications that contain the
word “file” or “system’ in the title

* Update operator applied on bib file with
publication[/title contains ‘file’]/tags = ‘file’

* Tag publications with “file” that contain the word
“file” in the title

Q ue ry O Pti m izati on Query Executor Cache and

Indices

FN N

Query Executor: | Parser |

* Input: expression of logical operators

* Output: best query plan using physical operators

* Via: rewrite rules, cost model

Cost Model: accounts for layout and statistics about data

Fragmented Parsing:

* Physical operators use file metadata to parse only what is
needed

Indexing of Keywords and File Structure

Hybrid expressions: logical and physical operations

* Trying to avoid need to bypass Damasc

|0

10

Vi EWS |Query Executor|

« On-the-fly computation of file(s) il views |

* First class citizen:

* Views can be queried and/or updated

* Views can be based on other views
e Query “fusing’:

* Optimize query against view + query defining view
* Logical Independence:

* Views shield applications from physical format changes

11

SerVice I: Query Executor
Self-Organizable Indexing

* Index Cost vs Benefit:
* Essential for performance

e Cost of index maintenance

e Automatic index creation and destruction:
* Based on recent query patterns

 Based on index interactions

* Hybrid, partial indexing: e.g. one file has
* inverted-list index for keywords in titles
* path index

* some lazy indexing

Cache and
Indices

Automatic
Indexer

12

Se rV| Ce 2, | Provenance | Query Executor Cach.e and
Tracker Indices

Provenance Tracking _/}\ (}\

Parser ‘ File Views \

Read/Write

Requests

* End-to-end provenance tracking | Byte Stream Interface |

* From views to underlying files, and
* back to (other) views
* semantic objects (e.g. matrix)
* Automatic bridging of observed and disclosed provenance
collection
* Observed provenance collection on physical level

* Disclosed provenance by applications on logical level

13

Realization in a Parallel File System

* |5t step: middleware
* All global Damasc data structures shared via POSIX IO

* Limited data movement savings

« 2" step: Ceph extension

 Distributed query executor, parser, indexer
* Damasc spans storage clients and servers
* Leveraging Ceph’s intelligent OSDs

* Format-aligned striping
* Striping strategy based on structure, not bytes

* Adaptive mapping to distributed data structures

* Leveraging Ceph’s scalable metadata cluster

14

Applications & Damasc

* Applications rely on higher-level APIs:
* NetCDF, HDF-5, ...

e Declarative Damasc interface
 Simplification for middleware libraries

* Cross-workload-adaptive optimization of the
storage of particular data sets w/ multiple formats

* Views for overcoming bottlenecks

* Example:View mapping one file to many files plus
automatic indexing (similar to PLFS)

15

Conclusions

* Moving data becomes dominant overhead

* Middleware provides much-needed
functionality but not performance

* Damasc adds data management layer to FS
» Additional semantic information for storage layer

* Facilitate in-place processing on storage nodes

* Eventually: full-scale distributed processing

16

Thank you

* Questions and comments!?

* Contact: carlosm(@cs.ucsc.edu

* Please read our paper!

17

mailto:carlosm@cs.ucsc.edu
mailto:carlosm@cs.ucsc.edu

