
...And eat it too: High read
performance in write-optimized
HPC I/O middleware file formats

Milo Polte, Jay Lofstead, John Bent, Garth Gibson, Scott A. Klasky,
Qing Liu, Manish Parashar, Norbert Podhorszki, Karsten Schwan,

 Meghan Wingate, Matthew Wolf

Carnegie Mellon University, Georgia Institute of Technology, Los Alamos National Lab,
Oak Ridge National Lab, Rutgers University

1
Sunday, November 15, 2009

HPC systems need faster I/O
• Building bigger computers for bigger apps

• Jaguar - Over 200,000 cores

• Roadrunner - Over 100,000 cores

• More data being written by more writers

• Checkpoints, simulation output

• Having time to compute requires fast output!

2

0%

25%

50%

75%

100%

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

A
p

p
lic

at
io

n
U

ti
liz

at
io

n
%

Year

Projection of
app util. in the

face of checkpointing

Sunday, November 15, 2009

What makes writing slow?
• Often small, strided writes to a single file (N-1)

• Filesystem lock contention for safety

• RAID parity updates

• Unaligned writes

• Result: Poor spindle utilization

3
Parallel Filesystem

host1

131 132 279 281 132 148

host2 host3

Sunday, November 15, 2009

Middleware Layers:
 The Right Write Solution

• Write acceleration software between apps and
storage

• Typically try to avoid extensive application,
filesystem changes

• Usually writes log-structured or “spiritually”
log-structured files

• Examples: PLFS, ADIOS, ZEST, LBIO, etc.

• Shown to dramatically improve write speeds

4
Sunday, November 15, 2009

Middleware Layers:
 The Right Write Solution

• Write acceleration software between apps and
storage

• Typically try to avoid extensive application,
filesystem changes

• Usually writes log-structured or “spiritually”
log-structured files

• Examples: PLFS, ADIOS, ZEST, LBIO, etc.

• Shown to dramatically improve write speeds

5

Writes aren’t the
subject of the talk today.

Sunday, November 15, 2009

• Intro - Writing

• Intro - Reading

• Case Studies:

• PLFS

• ADIOS

• Future work

• Conclusions

6

Outline

Sunday, November 15, 2009

• Checkpoint

• ‘Write Once Read Maybe’

• Restart time still important

• Typically read back in entirety

• Simulations

• Read back for visualization, analysis

• May read back many times, odd patterns

7

The importance of reading

Sunday, November 15, 2009

• Recall: middleware layers typically write logs

• Reading log-structured writes can be slow if the
reads don’t match the write pattern
[Rosenblum, 91]

• e.g. reading a randomly written file sequentially:

Log-structured Reading

8

C A D E BC A D E BOn disk log:

Client
memory:

Sunday, November 15, 2009

When can it go right?

• When logs are read the same as the write pattern

• e.g. Processes writing monotonically increasing
logical offsets, one reader reads sequentially

9

1 4 8 10 13

2 5 6 12 14

3 7 9 11 15

....

Log 1

Log 2

Log 3

Numbers are logical
offsets

Grey boxes are read
ahead buffers

Reader
memory 1 2 3 4 5

Sunday, November 15, 2009

When can it go right?
• Example: Readers have same access pattern as

equal number of writers

• Example: Writers write monotonically increasing
offsets; readers read sequentially

• Typical of checkpoint restarts, archiving

• What about restarting from a different number of
writers?

• What about analysis workloads?

10
Sunday, November 15, 2009

Our Investigations In Reading

• For log-structured middleware layers:

• Validate good performance on ‘uniform’ restart

• Examine the more challenging case of restart on a
different number of processes

• Do so with two case studies: PLFS, ADIOS

11
Sunday, November 15, 2009

PLFS Design

12

Requirement Solution

Extreme parallelism Decouples writers to individual
files

Fast, efficient writes Writes in a log structured manner

No application changes Exposes POSIX filesystem interface

Portable across filesystems
Implemented as a ‘stackable’ FUSE
filesystem

Low comp. node footprint Uses existing parallel FS storage

Sunday, November 15, 2009

PLFS Virtual Layer

foo

host1

foo/

host1/ host2/ host3/

131 132 279 281 132 148

data.131
index

data.132 data.279 data.281

index
data.132 data.148

index

Underlying Parallel Filesystem

host2 host3

13

PLFS Design

Sunday, November 15, 2009

PLFS Testing Setup

14

• Run on Roadrunner at LANL

• Storage was PanFS filesystem

• Checkpoint benchmark: MPI_IO_TEST

• Can run both N-1 and N-N checkpoints

• 20 GB checkpoint file written in 47KB strides

• Compare read back performance with and
without PLFS

Sunday, November 15, 2009

PLFS: Uniform Restart

15

Read bandwidth of LANL’s MPI-IO-TEST

(falloff due to strong scaling,
shrinking log files)

Sunday, November 15, 2009

Why is reading directly so much worse?

16

• Due to strided reading pattern, most accesses in
same region of single file

• Uses smaller number of disks at once

• Reading from multiple PLFS log files uses many
spindles, read ahead buffers at once

Sunday, November 15, 2009

PLFS: Non-uniform Restart

17

Read bandwidth of LANL’s MPI-IO-TEST

(contention within log files limiting
maximum performance)

Sunday, November 15, 2009

ADIOS Design

18

External
Metadata
(XML file)

Scientific Codes

ADIOS API

D
ART

D
ataTap

M
PI-IO

PO
SIX IO

H
D

F-5

Viz Engines

O
thers (plug-in)

buffering schedule feedback

• Library used in place of other common
middleware layers

• Simple API for Fortran and C
• Pluggable layers for writing through

different file formats without code changes
• ADIOS-BP, netCDF, HDF-5
• Hooks into asynchronous and

synchronous I/O
• Free hooks into visualization and workflow

systems through the data flows
• Optimized IO implementations provided for

each transport method (e.g., MPI-IO,
HDF-5, etc.)

• Binary, tagged format provided by default:
“Binary Packed”

Sunday, November 15, 2009

BP File Format
• Each process writes independently (a ‘process group’ (PG))

• Limited coordination

• File organization more natural for striping

• Rich index contents (PGs, vars, and attributes)

• Easy, indirect access to any element

• Local data written to PG’s, annotations used to reconstruct
global objects

19
Sunday, November 15, 2009

ADIOS Testing Setup
• Run on Jaguar XT4 at ORNL with Lustre storage

• ADIOS using MPI writing to a BP format

• Parallel netCDF 1.1.0 as control

• Pixie3D IO Kernel, a 3D MHD fusion code

• 3-D domain decomposition
–LOTS of memory reorganization for non-log-based formats

–Looked at small, medium, and large data sizes

Sunday, November 15, 2009

ADIOS: Uniform Reads

21

Read bandwidth of Pixie3D

Sunday, November 15, 2009

Why Does ADIOS Read Better?

• Reading data back in without having to shuffle as
much gives fewer, larger reads

• No reorganization necessary for uniform restarts
means no cost to write or read back in

Sunday, November 15, 2009

ADIOS: Non-uniform Reads

23

Read bandwidth of Pixie3D, Large Data Size

Sunday, November 15, 2009

Future Work

24

• More apps, analytic workloads

• How important is domain knowledge?

• ADIOS knows about variables, PLFS only knows bytes

• If read back is slower, does write benefit still
represent a net gain?

• How many times are files read after being
written?

Sunday, November 15, 2009

Conclusions

• I/O Middleware layers provide a large benefit to
application write speeds

• Despite a log structured format, they also more
efficiently utilize filesystem resources for reading

• This seems to be true for both uniform and
non-uniform restarts and full reads

• Further research is planned into how these
formats affect data analysis workloads

25
Sunday, November 15, 2009

