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HPC systems need faster I/O
• Building bigger computers for bigger apps

• Jaguar - Over 200,000 cores

• Roadrunner - Over 100,000 cores

• More data being written by more writers

• Checkpoints, simulation output

• Having time to compute requires fast output!
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What makes writing slow?
• Often small, strided writes to a single file (N-1)

• Filesystem lock contention for safety

• RAID parity updates

• Unaligned writes

• Result: Poor spindle utilization
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Middleware Layers:
 The Right Write Solution

• Write acceleration software between apps and 
storage

• Typically try to avoid extensive application, 
filesystem changes

• Usually writes log-structured or “spiritually” 
log-structured files

• Examples: PLFS,  ADIOS, ZEST, LBIO, etc.

• Shown to dramatically improve write speeds

4
Sunday, November 15, 2009



Middleware Layers:
 The Right Write Solution

• Write acceleration software between apps and 
storage

• Typically try to avoid extensive application, 
filesystem changes

• Usually writes log-structured or “spiritually” 
log-structured files

• Examples: PLFS,  ADIOS, ZEST, LBIO, etc.

• Shown to dramatically improve write speeds

5

Writes aren’t the
subject of the talk today.
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• Intro - Writing

• Intro - Reading

• Case Studies:

• PLFS

• ADIOS

• Future work

• Conclusions

6

Outline
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• Checkpoint

• ‘Write Once Read Maybe’

• Restart time still important

• Typically read back in entirety

• Simulations

• Read back for visualization, analysis

• May read back many times, odd patterns
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The importance of reading
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• Recall: middleware layers typically write logs

• Reading log-structured writes can be slow if the 
reads don’t match the write pattern
[Rosenblum, 91]

• e.g. reading a randomly written file sequentially:

Log-structured Reading
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When can it go right? 

• When logs are read the same as the write pattern

• e.g. Processes writing monotonically increasing 
logical offsets, one reader reads sequentially
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When can it go right? 
• Example: Readers have same access pattern as 

equal number of writers

• Example: Writers write monotonically increasing 
offsets; readers read sequentially

• Typical of checkpoint restarts, archiving

• What about restarting from a different number of 
writers?

• What about analysis workloads?
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Our Investigations In Reading

• For log-structured middleware layers:

• Validate good performance on ‘uniform’ restart

• Examine the more challenging case of restart on a 
different number of processes

• Do so with two case studies: PLFS, ADIOS
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PLFS Design
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Requirement Solution

Extreme parallelism Decouples writers to individual 
files

Fast, efficient writes Writes in a log structured manner

No application changes Exposes POSIX filesystem interface

Portable across filesystems
Implemented as a ‘stackable’ FUSE 
filesystem

Low comp. node footprint Uses existing parallel FS storage
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PLFS Virtual Layer

foo

host1

foo/
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index
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index
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index

Underlying Parallel Filesystem
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PLFS Design
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PLFS Testing Setup
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• Run on Roadrunner at LANL

• Storage was PanFS filesystem

• Checkpoint benchmark: MPI_IO_TEST

• Can run both N-1 and N-N checkpoints

• 20 GB checkpoint file written in 47KB strides

• Compare read back performance with and 
without PLFS
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PLFS: Uniform Restart
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Read bandwidth of LANL’s MPI-IO-TEST 

(falloff due to strong scaling, 
shrinking log files)
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Why is reading directly so much worse?
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• Due to strided reading pattern, most accesses in 
same region of single file

• Uses smaller number of disks at once

• Reading from multiple PLFS log files uses many 
spindles, read ahead buffers at once
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PLFS: Non-uniform Restart
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Read bandwidth of LANL’s MPI-IO-TEST 

(contention within log files limiting 
maximum performance)
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ADIOS Design
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• Library used in place of other common 
middleware layers

• Simple API for Fortran and C
• Pluggable layers for writing through 

different file formats without code changes
•  ADIOS-BP, netCDF, HDF-5
• Hooks into asynchronous and 

synchronous I/O
• Free hooks into visualization and workflow 

systems through the data flows
• Optimized IO implementations provided for 

each transport method (e.g., MPI-IO, 
HDF-5, etc.)

• Binary, tagged format provided by default: 
“Binary Packed”
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BP File Format
• Each process writes independently (a ‘process group’ (PG))

• Limited coordination

• File organization more natural for striping

• Rich index contents (PGs, vars, and attributes)

• Easy, indirect access to any element

• Local data written to PG’s, annotations used to reconstruct 
global objects
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ADIOS Testing Setup
• Run on Jaguar XT4 at ORNL with Lustre storage

• ADIOS using MPI writing to a BP format

• Parallel netCDF 1.1.0 as control

• Pixie3D IO Kernel, a 3D MHD fusion code

• 3-D domain decomposition
–LOTS of memory reorganization for non-log-based formats

–Looked at small, medium, and large data sizes
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ADIOS: Uniform Reads
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Read bandwidth of Pixie3D
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Why Does ADIOS Read Better?

• Reading data back in without having to shuffle as 
much gives fewer, larger reads

• No reorganization necessary for uniform restarts 
means no cost to write or read back in
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ADIOS: Non-uniform Reads
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Read bandwidth of Pixie3D, Large Data Size
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Future Work
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• More apps,  analytic workloads

• How important is domain knowledge?

• ADIOS knows about variables, PLFS only knows bytes

• If read back is slower, does write benefit still 
represent a net gain?

• How many times are files read after being 
written?

Sunday, November 15, 2009



Conclusions

• I/O Middleware layers provide a large benefit to 
application write speeds

• Despite a log structured format, they also more 
efficiently utilize filesystem resources for reading

• This seems to be true for both uniform and 
non-uniform restarts and full reads

• Further research is planned into how these 
formats affect data analysis workloads
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