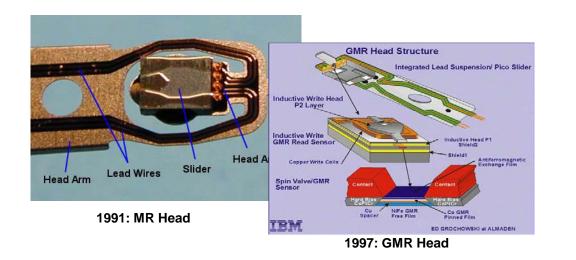

IBM Almaden Research Center - Storage Systems


Almaden Research - History of Innovations

PubIDPublisherPubAddress03-4472822Random House123 4th Street, New York04-7733903Wiley and Sons45 Lincoln Blvd, Chicago03-4859223O'Reilly Press77 Boston Ave, Cambridge03-3920886City Lights Books99 Market, San Francisco

1970: Relational Database 1974: SQL Query Language

Panache – A Parallel File System Cache for Global File Access

- Persistent cache in client-side GPFS file system
 - Global wide-area read-write cache designed for scalability and performance spanning multiple sites
 - Integrated with GPFS for consistent access from all nodes of the cluster
- Over the WAN consistency is configurable
- pNFS for parallel data transfer over WAN
- Disconnected operations
- Application updates to cache are written back asynchronously
- Writebacks are deferred if disconnection occurs
 Updates are journalled for later writeback
- Supports whole-file or partial-file caching
- Storage Cloud
 - Backup
 - Use cache for data replication
 Disaster Recovery
 - Recover from site failures
 Peer-to-Peer
 - Seamless data movement among sites
 - Consolidation

Home Sites

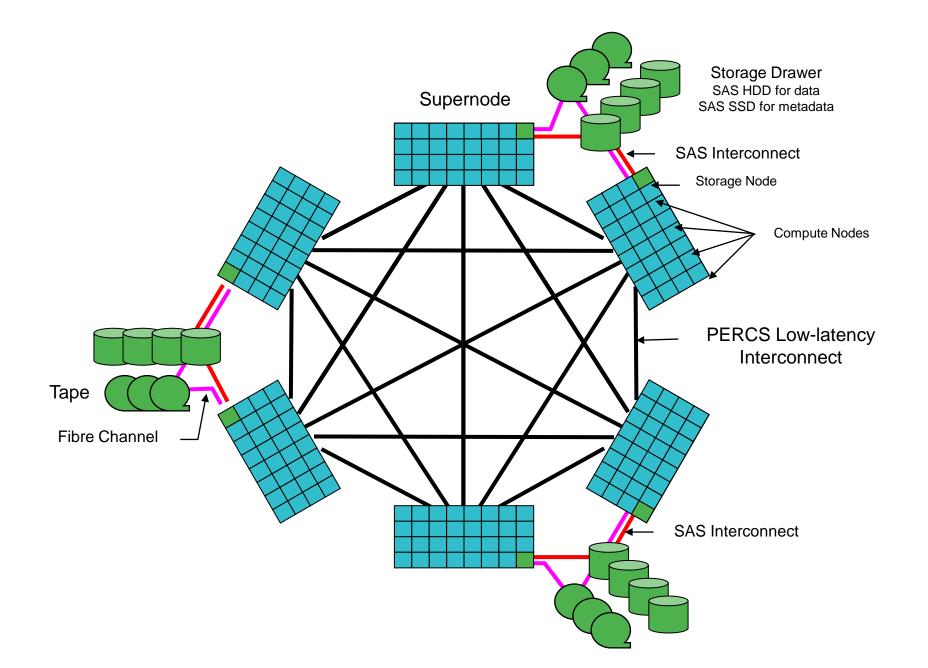
- SOFS+Panache-enabled clusters
- Multiple and geographically distributed
- Replicate/Migrate data between sites based on policy. (during planned upgrades or access based)
- Double as Edge site

Customer Premise
Small write-thru cache
Connect through edge cache
NFS, CIFS, etc

1998: Microdrive

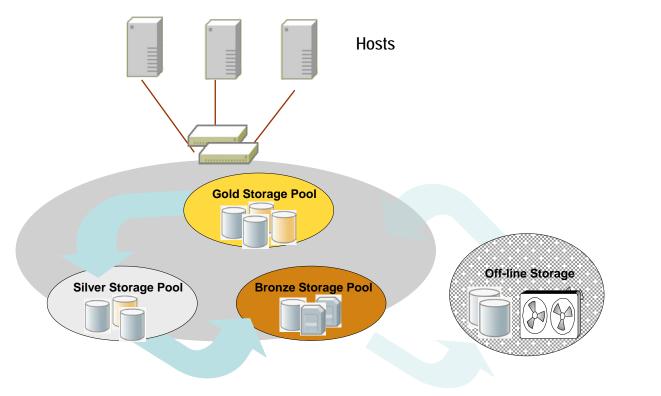
2000: National Medal of Technology Leadership in Data storage technologies

Provide single file system view of numerous legacy filers
 Migration

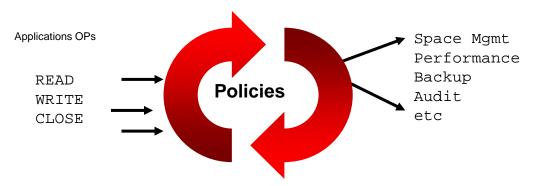

Online cross-vendor data migration

- SOFS+Panache caching clusters
 - Multiple and geographically distributed
 - Cache data from core sites
 - Cache both reads and writes
 - Data async written to core
 - Per fileset configurable consistency

File Systems for Petascale Supercomputers


Blue Waters System at NCSA

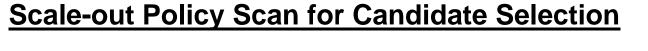
- PERCS: "Productive Easy-to-use Reliable Computer System"
 - Balance between hardware, software, storage, networking, scaling, and productivity
 - Sustained Petaflop performance
 - 8x more memory per core than other HPCS systems
 - GPFS Perseus for storage controller
- NCSA Blue Waters PERCS
 - Collaboration between IBM, NCSA, State of Illinois, and partners
 - IBM Power7 processor
 - Shared memory and storage
 - 200k processor cores
 - 10 Petabyte GPFS storage system
 - Operational in 2011



Petascale Data Management

- Petabytes on-line, Exabytes off-line
- Billions to Trillions of files
- Hundreds of Thousands of nodes

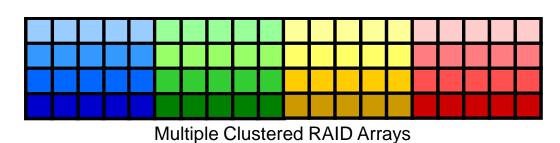
Policy Controlled Event Triggers

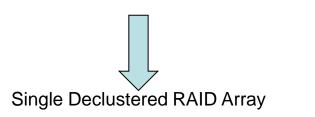


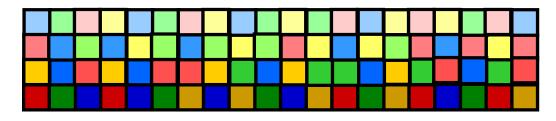
Policy controlled event trigger notification open, close, create, destroy, read, write, chattr,...

Policy filters events based on file attributes Events delivered to multiple data managers

Parallel Execution & Data Migration


Sequential access to attributes & extended attributes Parallel "MapReduce" on file metadata Statistical sampling -- find "good" candidates quickly Low-priority -- consume idle cycles / bandwidth




Perseus: Advanced software RAID for GPFS

50-disk arrays to 100,000-disk supercomputers

- Software RAID for scalable GPFS (NSD)
- Declustered RAID implementation
 - Spread data strips randomly across all array disks
 - Performance will be minimally affected by rebuilding array
- 2/3-fault tolerant erasure codes
 - "RAID-D2" or "RAID-D3"
 - Software Reed-Solomon
 - Optional 3/4-way mirroring
- End-to-end checksum
- Runs on generic servers with direct-attach disks
- Supersedes traditional external RAID controller
 - Reduces storage subsystem costs by 30 60 %
- Improved file system performance
 - With 100k disks, a storage array is always rebuilding
 - 100k disks * 24 / 400 khrs => 6 rebuilds per day
- Improved data integrity
 - RAID-5 is non-starter with 100k disks: MTTDL ~ 9 days!
 - Hard error rate of 1-in-10¹⁵ bits implies data loss every ~26th rebuild, or once every 26 / 6 = 4 days
 - RAID-D2 (8+2P stripes): MTTDL ~ 100 years
 - RAID-D3 (8+3P stripes): MTTDL ~ 130 million years!

