Comparing Performance of Solid State Devices and Mechanical Disks

Jiri Simsa

Milo Polte, Garth Gibson

PARALLEL DATA LABORATORY

Carnegie Mellon University

Motivation

- Performance gap [Pugh71] technology
 - Spans 6 orders of magnitude
 - Right mix of price, capacity, performance, ...
 - Cost-effectiveness \$ per performance
- Flash for consumer and enterprise storage
 - Flash believed to be the gap technology
 - What is Flash good at?
 - small random I/O

How well does Flash do?

• IOZone, high-end consumer devices

Outline

- Performance measurements
 - Experimental setup
 - High-end consumer devices
 - Enterprise devices
 - Interpreting the results
- Hybrid storage research questions

Experimental Setup

- Machines:
 - Intel CPUs, 1 4 GB DRAM, Linux 2.6
 - SATA, SCSI, and PCIe interconnects
 - Range of disks and Flash based Solid State Devices
- Workload:
 - single-threaded IOZone test
 - varying request sizes and access patterns
 - 4 GB file through an ext3 file system
 - OS and device write buffers on

Measured Solid State Devices

'08 high-end consumer and enterprise devices:

- Mtron Mobi 16GB @ \$370
- Memoright GT 16GB @ \$510
- Intel X25-M 80GB @ \$730
- Intel X25-E 32GB @ \$810
- FusionIO ioDrive 80GB @ \$2400

Compared to 7200rpm, 10k rpm, and 15k rpm Seagate magnetic disks.

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

Sequential Reads

Sequential Reads

Sequential Writes

Sequential Writes

Random Reads

Random Reads

Random Writes

Carnegie Mellon Parallel Data Laboratory

13

Random Writes

Interpretation

- For the measured devices:
 - Efficient log-structured I/O layer will improve relative SSD performance
 - Except for random reads, disk achieve
 - comparable price per performance
 - much better price per capacity
 - Target uses for consumer Flash:
 - High read to write ratio
 - Random access pattern
 - Small capacity

Measured Solid State Devices

'08 high-end consumer and enterprise devices:

- Mtron Mobi 16GB @ \$370
- Memoright GT 16GB @ \$510
- Intel X25-M 80GB @ \$730
- Intel X25-E 32GB @ \$810
- FusionIO ioDrive 80GB @ \$2400

Compared to 7200rpm, 10k rpm, and 15k rpm Seagate magnetic disks.

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

Improved Sequential Read Bandwidth

Improved Sequential Read Bandwidth

Improved Sequential Write Bandwidth

Improved Sequential Write Bandwidth

Great Random Read Performance

Great Random Read Performance

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

Exceptional Random Write Performance

Exceptional Random Write Performance

Interpretation

- For the measured devices:
 - For any random I/O, SSDs achieve:
 - -better \$ per IOPS
 - -similar \$ per throughput
 - High performance enabled by parallelism and controller sophistication
 - Target workloads for Flash:
 - Random I/O
 - -AMR check-pointing

Summary

Price per performance

	Sequential reads	Sequential writes	Random reads	Random writes
Memoright GT	\$5.80	\$5.96	\$0.12	\$1.77
Mtron Mobi	\$4.81	\$4.91	\$0.08	\$2.49
Intel X25-M	\$3.35	\$12.15	\$0.16	\$0.08
Intel X25-E	\$3.64	\$4.47	\$0.12	\$0.07
FusionIO ioDrive	\$5.64	\$14.79	\$0.11	\$0.06
15k rpm	\$7.43	\$7.61	\$1.46	\$0.76
10k rpm	\$5.78	\$5.47	\$1.55	\$0.80
7200 rpm	\$2.34	\$2.59	\$1.00	\$0.34

7200 rpm have cheapest sequential bandwidth

SSDs have much cheaper read IOPS

Enterprise SSDs have much cheaper write IOPS

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

Ongoing and Future Work

- Concurrent I/O and SSDs
 - measured numbers fall behind advertised ones
 - role of the file system
 - future measurements using IOMeter
- Infrastructure for hybrid storage
 - Virtual device aggregating disks and SSDs
 - Annotation of existing file systems
 - Caching algorithms
 - Data partitioning approaches

Questions?

Thank you for your attention.

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/