
Logan: Automatic
Management for Evolvable,

Large-Scale, Archival Storage

Petascale Data Storage Workshop
November 17, 2008

Mark W. Storer Kevin M. Greenan Ian F. Adams

Ethan L. Miller Darrell D.E. Long Kaladhar Voruganti

Archival Storage Problem

✦ Archival storage is a unique class
✦ Well-suited to a distributed architecture

• Intelligent devices foster evolution
✦ How to manage and administer a totally decentralized

system?

Archival Storage Traditional, Enterprise Storage

Workload write once, (read maybe) variable

Performance adequate latency, decent throughput low latency, high throughput

Cost cheaper is better commensurate to performance

Reliability long-term short-term

Scalability time, capacity, technology, vendors capacity

2

System Overview

Logan

PC C C C

R
e
d
u
n
d
a
n
c
y
 G

ro
u
p
s

R0

R1

R2

✦ Fixed-sized blocks arranged in fixed sized segments
✦ Two level reliability model:

• Intra: Reliability encoding within segment for media faults
• Inter: Reliability Groups (RG) across device segments

Logan: management layer running on storage tomes

3

Management Goals
✦ Scale to hundreds of thousands (millions?) of tomes

• Archival storage systems must scale to exabytes
✦ Avoid the need for global knowledge

• Even a small amount of information per tome requires too
much space

• Global decisions don’t scale well
✦ Avoid centralized management points

• Potential single point of failure
• Don’t want to have “specialized” nodes
• Monitoring issues

- Potential bottleneck for reliability checking
- May create problems if network is partitioned

4

Management Groups
✦ Approach: group tomes into

Management Groups (MG)
• MG elects a group leader to

handle group decisions
✦ System starts with one MG
✦ Groups make inter-group

edges to form a hypercube
• Inter-MG routing in log time

✦ When a single MG gets too
large, it splits
• Scalable hashing using LH* 4

(100)

0

(000)

1

(001)

2

(010)

3

(011)

5

(101)

6

(110)

7

(111)

source group

destination group

5

Management Group Scaling
✦ Parent P splits to make child C
✦ P informs C of grandparents

G1, G2,...
✦ C ⊕ P ⋁ G = F

• if F < C, build edge FC

4

(100)

0

(000)

1

(001)

2

(010)

3

(011)

5

(101)

6

(110)

C P

G1

G2

F

Example: Node 2 (010) splits to form Node 6 (110)
G1: ➅ ⊕ ➁ ⋁ ⓪ = 100 = ➃ < ➅  build ➅ ➃
G2: ➅ ⊕ ➁ ⋁ ➂ = 111 = ➆

6

Device States

Expired

Contrib-
uting

Pending

Install Node

burn-in failure
(infant mortality)

integrate into
redun. group

device
failure

decommission

Remove Node

7

✦ Nodes progress through three states:
• Pending: alive, known to the system, not in any RGs
• Contributing: active member of one or more RGS
• Expired: failed or decommissioned

New device enters system
1. Broadcast for other nodes
2. Obtain LH* info
3. Calculate MG
4. Contact MG leader
5. Enter MG in pending state

Data-Driven Decision Making
✦ Devices maintain list of self-descriptive attributes

• e.g.: segment count, power consumption, age, etc.
✦ Leader collects attributes to develop group statistics
✦ Heuristic algorithms use statistics to find “good”

segment to RG mapping

✦ Use simulated annealing to make decisions:
• Solution space (X): viable mappings of segments to RGs

- Either new mappings or replacement mappings
• Neighbor func. (N): randomized segment to RG mapping

- Differs per management task
• Objective func. (P): minimize cost per segment

8

Management Tasks
✦ Scale-out: adding capacity to the system

• Create new redundancy groups
• Add device to existing redundancy group
• N: random mapping of unassigned segments to RGs

✦ Recovery: map new segments to failed segments
• N: random mapping of new, replacement segments

✦ Maintenance: max. efficiency by decommissioning wasteful
devices
• N: randomly swap out wasteful devices and replace them with

segments from other devices
• Maintenance decision can be done opportunistically
e.g. wait for next scrub cycle to scrub & copy

9

Status and Future Work
✦ Current: implementation and experimentation

• How many devices per management group?
• How best to weight attributes in heuristic algorithms?
• Secure leadership elections

✦ Dealing with network partitions
✦ Geographically diverse redundancy
✦ Optimizing device dependency lists
✦ Recovery schedule

10

Questions
✦ Thanks to our sponsors:

• Petascale Data Storage Institute
• SSRC industrial sponsors

✦ Thanks to team members
• Mark W. Storer
• Kevin M. Greenan
• Ian F. Adams
• Ethan L. Miller
• Darrell D. E. Long
• Kaladhar Voruganti

11

