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Need scalable file management

Today’s file systems contain

* Petabytes of data, billions of files, and thousands of users
File systems have focused on scaling
* 1/O and metadata throughput, latency, fault-tolerance, cost

* Limited work on scaling organization and retrieval

File system organization largely unchanged for 30 years

File organization and retrieval has not kept pace with file systems
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Problems with current approach

* Files are organized into a single hierarchy

* Possibly billions of files and directories

* Slow and inaccurate
* Users must carefully organize and name files and directories
- Tedious and time consuming
* Users must manually navigate huge hierarchies
- Wastes time and is inaccurate

* Files only have a single classification

Does not scale to petascale file systems
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Scalable file retrieval with search

* File system search has been researched for decades

* Focused on full-text (aka keyword) search

* Organizing and retrieving files with search
* Files have many automatic classifications
- Organization becomes much simpler
Files can be retrieved with any feature/keywords
- No more slow namespace navigation

Reduces the chances of lost data




Petascale search challenges

Cost

* Very expensive - often requires dedicated hardware

Performance
* Tough to scale - often trade-off search and update performance

* File system search should efficiently do both

Ranking

* Limited file ranking algorithms

Security

* Can significantly degrade search performance




A specialized petascale search design

Exploits file system properties

Can be integrated within the file system
Leverage namespace locality with hierarchical partitioning [LeungQ9]

Namespace influences

* File access patterns [Leung08, Vogel99]

* File properties [Agrawal07, Leung09]

*  Who accesses them [Agrawal07/, Leung08]




Index partitioning
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* Traditional file system search uses an inverted index
* Consists of a dictionary that points posting lists

Our approach partitions the index based on the namespace

* Posting lists are broken into segments
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Benefits of our design

Flexible, fine-grained index control

* Search and update can be controlled at sub-tree granularity

* Critical for index with billions of files
Reducing the search space

* Eliminate partitions that do not match search criteria

* Allows users to control scope and performance of queries

Efficient index updates

* Smaller posting lists are easier to update and keep sequential on-disk

Better resource utilization
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The indirect index

Indirect Index
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Posting List Segments for Partition 2

* An inverted index that points to partition locations

e Stores the dictionary
* Posting lists store partition segment locations
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Other possible extensions

Security
* Eliminate restricted sub-trees from search space

* No extra space required and reduces permission check

Ranking
* Utilize namespace locality to improve search result ranking

* Employ different ranking algorithms for different sub-trees

Cost efficiency
* Exploit Zipf-like sub-tree query patterns

* Compress or migrate rarely searched sub-tree segments to lower-tier
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Current and future work

We are currently working on...

Collecting and analyzing keyword data sets
* Crawl real-world large-scale file systems

* No current file system search keyword collections exist

Completing the index and algorithm designs

Implementation and evaluation within the Ceph petascale file system

* Allows realistic integration and benchmarking
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Thank you!

* Thanks to:

* Minglong Shao, Timothy Bission, Shankar Pasupathy and NetApp’s ATG
* SSRC faculty and students

* Come see us at the poster session!

* Spyglass: Fast, Scalable Metadata Search for Large-Scale Storage Systems

Questions!?




