
Scalable Full-Text Search for
Petascale File Systems

Andrew W. Leung • Ethan L. Miller
University of California, Santa Cruz

3rd Petascale Data Storage Workshop (PDSW ’08)
November 17th, 2008

Need scalable file management

• Today’s file systems contain
• Petabytes of data, billions of files, and thousands of users

• File systems have focused on scaling
• I/O and metadata throughput, latency, fault-tolerance, cost

• Limited work on scaling organization and retrieval

• File system organization largely unchanged for 30 years

• File organization and retrieval has not kept pace with file systems

2

Problems with current approach

• Files are organized into a single hierarchy
• Possibly billions of files and directories

• Slow and inaccurate
• Users must carefully organize and name files and directories

- Tedious and time consuming

• Users must manually navigate huge hierarchies
- Wastes time and is inaccurate

• Files only have a single classification

• Does not scale to petascale file systems

3

Scalable file retrieval with search

• File system search has been researched for decades
• Focused on full-text (aka keyword) search

• Organizing and retrieving files with search
• Files have many automatic classifications

- Organization becomes much simpler

• Files can be retrieved with any feature/keywords
- No more slow namespace navigation
- Reduces the chances of lost data

4

Petascale search challenges
• Cost

• Very expensive - often requires dedicated hardware

• Performance
• Tough to scale - often trade-off search and update performance

• File system search should efficiently do both

• Ranking
• Limited file ranking algorithms

• Security
• Can significantly degrade search performance

5

A specialized petascale search design

• Exploits file system properties

• Can be integrated within the file system

• Leverage namespace locality with hierarchical partitioning [Leung09]

• Namespace influences
• File access patterns [Leung08, Vogel99]

• File properties [Agrawal07, Leung09]

• Who accesses them [Agrawal07, Leung08]

6

Index partitioning

• Traditional file system search uses an inverted index
• Consists of a dictionary that points posting lists

• Our approach partitions the index based on the namespace
• Posting lists are broken into segments

7

/

home proj usr

john jim distmeta reliability include

thesis scidac src experiments

Keyword 1's
Posting List
Segments

Hard
Disk

Benefits of our design
• Flexible, fine-grained index control

• Search and update can be controlled at sub-tree granularity

• Critical for index with billions of files

• Reducing the search space
• Eliminate partitions that do not match search criteria

• Allows users to control scope and performance of queries

• Efficient index updates
• Smaller posting lists are easier to update and keep sequential on-disk

• Better resource utilization

8

The indirect index

• An inverted index that points to partition locations
• Stores the dictionary

• Posting lists store partition segment locations

9

Keyword 1

Keyword 2

Keyword 3

Keyword 4

Dictionary Posting Lists

Posting List Segments for Partition 1

...

Posting List Segments for Partition 2

...

Indirect Index

Other possible extensions

• Security
• Eliminate restricted sub-trees from search space

• No extra space required and reduces permission check

• Ranking
• Utilize namespace locality to improve search result ranking

• Employ different ranking algorithms for different sub-trees

• Cost efficiency
• Exploit Zipf-like sub-tree query patterns

• Compress or migrate rarely searched sub-tree segments to lower-tier

10

Current and future work

• We are currently working on...

• Collecting and analyzing keyword data sets
• Crawl real-world large-scale file systems

• No current file system search keyword collections exist

• Completing the index and algorithm designs

• Implementation and evaluation within the Ceph petascale file system
• Allows realistic integration and benchmarking

11

Thank you!

• Thanks to:
• Minglong Shao, Timothy Bission, Shankar Pasupathy and NetApp’s ATG

• SSRC faculty and students

• Come see us at the poster session!
• Spyglass: Fast, Scalable Metadata Search for Large-Scale Storage Systems

• Questions?

12

