Scalable Full-Text Search for
Petascale File Systems

Andrew W. Leung ® Ethan L. Miller
University of California, Santa Cruz

3'd Petascale Data Storage Workshop (PDSW ’08)
November 17th, 2008

Need scalable file management

Today’s file systems contain

* Petabytes of data, billions of files, and thousands of users
File systems have focused on scaling
* 1/O and metadata throughput, latency, fault-tolerance, cost

* Limited work on scaling organization and retrieval

File system organization largely unchanged for 30 years

File organization and retrieval has not kept pace with file systems

pdsi

Problems with current approach

* Files are organized into a single hierarchy

* Possibly billions of files and directories

* Slow and inaccurate
* Users must carefully organize and name files and directories
- Tedious and time consuming
* Users must manually navigate huge hierarchies
- Wastes time and is inaccurate

* Files only have a single classification

Does not scale to petascale file systems

pdsi

Scalable file retrieval with search

* File system search has been researched for decades

* Focused on full-text (aka keyword) search

* Organizing and retrieving files with search
* Files have many automatic classifications
- Organization becomes much simpler
Files can be retrieved with any feature/keywords
- No more slow namespace navigation

Reduces the chances of lost data

Petascale search challenges

Cost

* Very expensive - often requires dedicated hardware

Performance
* Tough to scale - often trade-off search and update performance

* File system search should efficiently do both

Ranking

* Limited file ranking algorithms

Security

* Can significantly degrade search performance

A specialized petascale search design

Exploits file system properties

Can be integrated within the file system
Leverage namespace locality with hierarchical partitioning [LeungQ9]

Namespace influences

* File access patterns [Leung08, Vogel99]

* File properties [Agrawal07, Leung09]

* Who accesses them [Agrawal07/, Leung08]

Index partitioning

N\ / /
home proj usr

PR B AN \

john jim - distmeta reliability include

Y\ / N\ :

. : : ,
thesis scidac src expelrlmeLts/' ~

I

|

\ v Keyword 1's
Posting List
Segments

—
i \& Hard
\\ /’ Disk
* Traditional file system search uses an inverted index
* Consists of a dictionary that points posting lists

Our approach partitions the index based on the namespace

* Posting lists are broken into segments
pdsi

Benefits of our design

Flexible, fine-grained index control

* Search and update can be controlled at sub-tree granularity

* Critical for index with billions of files
Reducing the search space

* Eliminate partitions that do not match search criteria

* Allows users to control scope and performance of queries

Efficient index updates

* Smaller posting lists are easier to update and keep sequential on-disk

Better resource utilization

pdsi

The indirect index

Indirect Index

Keyword 1
Keyword 2
Keyword 3
Keyword 4

-

_—— -

I

I

Posting List Segments for Partition 1

-~

‘-__
—_——
_———
—_——

Posting List Segments for Partition 2

* An inverted index that points to partition locations

e Stores the dictionary
* Posting lists store partition segment locations

—

Other possible extensions

Security
* Eliminate restricted sub-trees from search space

* No extra space required and reduces permission check

Ranking
* Utilize namespace locality to improve search result ranking

* Employ different ranking algorithms for different sub-trees

Cost efficiency
* Exploit Zipf-like sub-tree query patterns

* Compress or migrate rarely searched sub-tree segments to lower-tier

pdsi

Current and future work

We are currently working on...

Collecting and analyzing keyword data sets
* Crawl real-world large-scale file systems

* No current file system search keyword collections exist

Completing the index and algorithm designs

Implementation and evaluation within the Ceph petascale file system

* Allows realistic integration and benchmarking

pdsi

Thank you!

* Thanks to:

* Minglong Shao, Timothy Bission, Shankar Pasupathy and NetApp’s ATG
* SSRC faculty and students

* Come see us at the poster session!

* Spyglass: Fast, Scalable Metadata Search for Large-Scale Storage Systems

Questions!?

