
Just-in-time Staging of Large InputJust-in-time Staging of Large Input
Data for Supercomputing JobsData for Supercomputing Jobs

Henry Monti, Ali R. Butt Sudharshan S. Vazhkudai



HPC Center Data Stage-in ProblemHPC Center Data Stage-in Problem
 Data stage-in entails moving all necessary input

files for a job to a center’s local storage
• Requires significant commitment of center resources while

waiting for the job to run
• Storage failures are common, and users may be required

to restage data

 Delaying input data causes costly job rescheduling
 Staging data too early is undesirable

• From a center standpoint:
• Wastes scratch space that could be used for other jobs

• From a user job standpoint:
• Potential job rescheduling due to storage system failure

⇒Coinciding Input Data Stage-in time with job
execution time improves HPC center
serviceability 2



Current Methods to Stage-in DataCurrent Methods to Stage-in Data

 No standardized method
 Employ common point-to-point transfer tools:

• GridFTP, HSI, scp, …
 Limitations

• Entail early stage-in to ensure data availability
• Do not leverage orthogonal bandwidth
• Oblivious to deadlines or job start times

Not an optimal approach for HPC data stage-in

33



Our Contribution:Our Contribution:
A Just-in-time Data Stage-in ServiceA Just-in-time Data Stage-in Service
 Coincides data stage-in with job start time
 Attempts to reduce overall scratch space usage
 Uses intermediate locations for temporary

storage
 Provides for quick restaging after storage

failures
 Integrates with real-world tools

• Portable Batch System (PBS)
• BitTorrent

 Supports a fault-tolerant way to stage data while
efficiently utilizing scratch space 44



55

Transfer completes much earlier than job startup time

Job Rescheduled!

Storage system failures may entail re-staging of data!



66

 Fast transfers  better opportunities for JIT Staging

Time between stage-in and job startup is small



Challenges Faced in JIT StagingChallenges Faced in JIT Staging

7

1.1. Obtaining accurate job start timesObtaining accurate job start times
2.2. Adapting to dynamic network behaviorAdapting to dynamic network behavior
3.3. Ensuring data reliability and availabilityEnsuring data reliability and availability
4.4. Managing deadlines during stage-inManaging deadlines during stage-in
5. Utilizing intermediate nodes
6.6. Providing incentives to participateProviding incentives to participate



Obtaining Accurate Job Start TimesObtaining Accurate Job Start Times

8

 Accurate estimates of job start time needed to
avoid job rescheduling

 Solution: Use Batch Queue Prediction (BQP)
• Provides statistical upper bound on job wait
• Predicts probability of job starting by the deadline

 Obtain predictions of job start time from BQP
 Stage-in data using this deadline



Adapting Data Distribution ToAdapting Data Distribution To
Dynamic Network BehaviorDynamic Network Behavior

 Available bandwidth can change
• Distribute data randomly – may not be effective
• Utilize network monitoring

 Solution: Use Network Weather Service (NWS)
• Provides bandwidth Measurement
• Predicts future bandwidth

 Choose dynamically changing data paths
 Select enough nodes to satisfy a given deadline
 Monitor and update the selected nodes

9

10 Mb/s
5 Mb/s

4 Mb/s

1 Mb/s
?



Protecting Data from IntermediateProtecting Data from Intermediate
Storage Location FailureStorage Location Failure

 Problem: Node failure may cause data loss

 Solution:
1. Use data replication

• Achieved through multiple data flow paths
2. Employ Erasure coding

• Can be done by the user or at the intermediates

10



Managing Deadlines during Stage-inManaging Deadlines during Stage-in

 Use NWS to measure available bandwidths
• Use Direct if it can meet a deadline
• Otherwise, perform decentralized stage-in

 If end host fails or cannot meet deadline
• Utilize decentralized stage-in approach

11

TStage <= TJobStartup



Intermediate Node DiscoveryIntermediate Node Discovery

 User specifies known and trusted nodes

 Utilize P2P Overlay
 Nodes advertise their availability to others
 Receiving nodes discovers  the advertiser

 Discovered nodes utilized as necessary
12

Identifier
space

02128-1



P2P Data Storage and DisseminationP2P Data Storage and Dissemination
 P2P-based storage

• Enables robust storage of data on loosely coupled
distributed participants: CFS, PAST, OceanStore, …

 P2P-based multicast
 Enables application-level one to many communication

 Example: BitTorrent
• Uses a scatter-gather protocol to distribute files
• Leverages Seeds - peers that store entire files
• Employs a tracker to maintain lists of peers
• Uses a “torrent file” containing metadata for data retrieval

13



Incentives to Participate inIncentives to Participate in
Stage-in ProcessStage-in Process

 Modern HPC jobs are often collaborative
• “Virtual Organizations” - set of geographically

distributed users from different sites
• Jobs in TeraGrid usually from such organizations

 Resource bartering among participants to
facilitate each others stage-in over time

 Nodes specified and trusted by the user

14



Integrating Stage-in with PBSIntegrating Stage-in with PBS

 Provide new PBS directives
• Specifies destination, intermediate nodes, and deadline

#PBS -N myjob
#PBS -l nodes=128, walltime=12:00
mpirun -np 128 ~/MyComputation
#Stagein file://SubmissionSite:/home/user/input1
#InterNode node1.Site1:49665:50GB
...
#InterNode nodeN.SiteN:49665:30GB
#Deadline 1/14/2007:12:00

15



Adapting BitTorrent Functionality to
Data Stage-in

 Tailor BitTorrent to meet the needs of our stage-in

 Restrict the amount of result-data sent to a peer
• Peers with less storage than the input size can be utilized

 Incorporate global information into peer selection
• Use NWS bandwidth measurements
• Use knowledge of node capacity from PBS scripts
• Choose the appropriate nodes with storage capacity

 Recipients are not necessarily end-hosts
• They may simply pass data onward

16



17

Evaluation: Experimental SetupEvaluation: Experimental Setup
 Objectives

• Compare with direct transfer, and BitTorrent
• Validate our method as an alternative to other

stage-in methods

 PlanetLab test bed
• 6 PlanetLab nodes:

center + end user + 4 intermediate nodes
 Experiments:

Compare the proposed method with
• Point-to-point transfer (scp)
• Standard BitTorrent

 Observe the effect of bandwidth changes



18

Results: Data Transfer Times withResults: Data Transfer Times with
Respect to Direct TransferRespect to Direct Transfer

Times are in seconds

File Size 100 MB 240 MB 500 MB 2.1 GB

Direct 172 351 794 3082

Client Offload 139 258 559 2164

Pull 43 106 193 822

A JIT stage-in is capable of significantly improving transfer times 



19

Results: Data Transfer Times withResults: Data Transfer Times with
Respect to Standard Respect to Standard BitTorrentBitTorrent

Times are in seconds
Transferring 2.1 GB file

Phase BitTorrent Our Method

Send to all intermediate nodes
(Client Offload)

2653 2164

HPC Center download (Pull) 960 822

Monitoring based stage-in is capable of outperforming standard BitTorrent



ConclusionConclusion

 A fresh look at Data Stage-in
• Decentralized approach
• Monitoring-based adaptation

 Considers deadlines and job start times
 Integrated with real-world tools
 Outperforms direct transfer by 73.3%

in our experiments

20



Future WorkFuture Work

 Measuring scratch space savings
 Measuring potential job delays
 Testing other stage-in scenarios

 Contact
• Virginia Tech.

• Distributed Systems and Storage Lab.
http://research.cs.vt.edu/dssl/

• {hmonti, butta}@cs.vt.edu
• ORNL

• http://www.csm.ornl.gov/~vazhkuda/Storage.html
• vazhkudaiss@ornl.gov

21


