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Motivation

« HPC systems growing larger
 More nodes
« Larger memory to checkpoint
* More frequent failures
« Application effectiveness means more frequent, larger
checkpoints in same total writing time

« Solutions?
» Fewer failures
« Faster checkpoints
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Checkpointing

Clients stop work, barrier sync, write state to
shared storage

Large scale
« Thousands of nodes
« Terabytes of data

No app work until checkpoint complete
* Need to be done as quickly as possible
Two possible strategies:

* N-to-N Checkpointing

* N-to-1 Checkpointing
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N-to-N Checkpointing

In N-to-N checkpointing, one file per client
* No per-file writing lock contention

Disk still sees seeks from multiple writers
« Bad disk spindle utilization

Lots of metadata creates
Potentially difficult to manage
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N-to-1 Checkpointing

All clients write their state to a single file in shared
storage

Little metadata traffic

Lock conflicts and many seeks
« Bad disk spindle utilization

Some apps do strided small writes from all nodes

 More lock contention
e Seeks?

What this talk is about
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Log-Structured Writing

* A log can allocate random writes sequentially
« Reduces number of seeks

* Proposed in LFS (Rosenblum, Ousterhout, 1992)
* Implemented in WAFL and PanFS

* Our use for checkpoints inspired by Zest

100

Series of writes: —> Logical Rgpresentatisgn:

pwrite(file, buffer[100], 50, 100);
pwrite(file, buffer, 50, 0); On Disk
pwrite(file, buffer[50], 50, 50); Representation:

"Write 50 bytes at offset 100"
l " "Write 50 bytes at offset 50"
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Log-Structured Writing

Series of writes

pwrite(file, buffer[100], 50, 100);
pwrite(file, buffer, 50, 0);
pwrite(file, buffer[50], 50, 50);

In memory buffer
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Log structured problems

Can struggle with write random, read sequential

But checkpoints are “write-once read-maybe”
« Hopefully....
Log writing may be inappropriate for entire filesystem

Want option for per-file customized representation

Our idea: Log writing on a per-file representation in a
distributed filesystem
» Assigned as class project in Advanced Storage Systems
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Experimental Design
* Implemented log writing in PVFS2

A distributed parallel filesystem running on Linux
« Storage server modified to write files in log fashion

* Reads scan file for all headers to find latest copy of data

* Could have been implemented at different level
— Library

—-A
— BEffiIesystem considered most universal
* Application: mpi io test
 Benchmark from_LAN_L for an N-to-1 checkpoint
* Preliminary evaluation of 10 clients, single server
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Results - Writes
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Results - Writes
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Results - Writes
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Read Performance (oops!)
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Read Performance (oops!)

Why is read performance so bad?
EACH read scans ALL headers

Checks header... Checks header... Checks header...
Found intersection! § No intersection! Found intersection!

C A B

Student project naive implementation

Better ideas:
* Footers rather than headers for backwards file scan
* Flatten the entire file on the first read

. Keep the index in separate metadata for faster scans
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Read Performance (oops!)
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Conclusions and Future Work

Class project results promising potential benefits
for per-file logging on a distributed filesystem

Read path could still use improvement

What about other per-file representations?

« Per-file RAID (like PanFS)

« Optimized format for scientific data files (e.g. NetCDF)?
* Other indices

Per-client logging?

« N-to-N checkpointing behind N-to-1 interface

* No lock contention, false sharing
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