
Log-structured files for fast
checkpointing

Milo Polte
Jiri Simsa, Wittawat Tantisiriroj,Shobhit Dayal,

Mikhail Chainani, Dilip Kumar Uppugandla, Garth Gibson

PARALLEL DATA LABORATORY
Carnegie Mellon University

 Milo Polte © November 08http://www.pdl.cmu.edu/ 2

Motivation
• HPC systems growing larger

• More nodes
• Larger memory to checkpoint
• More frequent failures

• Application effectiveness means more frequent, larger
checkpoints in same total writing time

• Solutions?
• Fewer failures
• Faster checkpoints

For this talk:
Want an application generic
solution without special hardware 0%

25%

50%

75%

100%

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

Year

A
p

p
li

c
a
ti

o
n

 U
ti

li
z
a
ti

o
n

 %

Checkpointing
• Clients stop work, barrier sync, write state to

shared storage
• Large scale

• Thousands of nodes
• Terabytes of data

• No app work until checkpoint complete
• Need to be done as quickly as possible

• Two possible strategies:
• N-to-N Checkpointing
• N-to-1 Checkpointing

N-to-N Checkpointing
• In N-to-N checkpointing, one file per client

• No per-file writing lock contention
• Disk still sees seeks from multiple writers

• Bad disk spindle utilization
• Lots of metadata creates
• Potentially difficult to manage

 Milo Polte © November 08http://www.pdl.cmu.edu/ 5

N-to-1 Checkpointing
• All clients write their state to a single file in shared

storage
• Little metadata traffic
• Lock conflicts and many seeks

• Bad disk spindle utilization
• Some apps do strided small writes from all nodes

• More lock contention
• Seeks?

• What this talk is about

pwrite(file, buffer[100], 50, 100);
pwrite(file, buffer, 50, 0);
pwrite(file, buffer[50], 50, 50);

 Milo Polte © November 08http://www.pdl.cmu.edu/ 6

Log-Structured Writing
• A log can allocate random writes sequentially

• Reduces number of seeks
• Proposed in LFS (Rosenblum, Ousterhout, 1992)

• Implemented in WAFL and PanFS
• Our use for checkpoints inspired by Zest

Logical Representation:

On Disk
Representation:

Series of writes:

Log-Structured Writing

pwrite(file, buffer[100], 50, 100);
pwrite(file, buffer, 50, 0);
pwrite(file, buffer[50], 50, 50);

Series of writes

On disk representation

0 50 100

In memory buffer

0 50 100

A B C

CA BC A B

Log structured problems
• Can struggle with write random, read sequential
• But checkpoints are “write-once read-maybe”

• Hopefully….
• Log writing may be inappropriate for entire filesystem
• Want option for per-file customized representation

• Our idea: Log writing on a per-file representation in a
distributed filesystem
• Assigned as class project in Advanced Storage Systems

 Milo Polte © November 08http://www.pdl.cmu.edu/ 9

Experimental Design
• Implemented log writing in PVFS2

• A distributed parallel filesystem running on Linux
• Storage server modified to write files in log fashion
• Reads scan file for all headers to find latest copy of data
• Could have been implemented at different level

– Library
– App
– But filesystem considered most universal

• Application: mpi_io_test
• Benchmark from LANL for an N-to-1 checkpoint

• Preliminary evaluation of 10 clients, single server

 Milo Polte © November 08http://www.pdl.cmu.edu/ 10

Results - Writes

0

10

20

30

40

50

60

70

1 4 16 64 256

Size of Client Writes (kilobytes)

B
a
n

d
w

id
th

 (
M

B
/

s
)

Original PVFS2

Log-structured PVFS2

 Milo Polte © November 08http://www.pdl.cmu.edu/ 11

Results - Writes

0

10

20

30

40

50

60

70

1 4 16 64 256

Size of Client Writes (kilobytes)

B
a
n

d
w

id
th

 (
M

B
/

s
)

Original PVFS2

Log-structured PVFS2

Implementation oddities

 Milo Polte © November 08http://www.pdl.cmu.edu/ 12

Results - Writes

0

10

20

30

40

50

60

70

1 4 16 64 256

Size of Client Writes (kilobytes)

B
a
n

d
w

id
th

 (
M

B
/

s
)

Original PVFS2

Log-structured PVFS2
16K: Largest observed

performance improvement

 Milo Polte © November 08http://www.pdl.cmu.edu/ 13

Read Performance (oops!)

0

50

100

150

200

250

300

1 4 16 64 256

Size of Client Reads (kilobytes)

B
a
n

d
w

id
th

 (
M

B
/

s
)

Original PVFS2

Log-structured PVFS2

Read Performance (oops!)
• Why is read performance so bad?
• EACH read scans ALL headers

• Student project naïve implementation
• Better ideas:

• Footers rather than headers for backwards file scan
• Flatten the entire file on the first read
• Keep the index in separate metadata for faster scans

C A B

Checks header…
Found intersection!

Checks header…
No intersection!

Checks header…
Found intersection!

 Milo Polte © November 08http://www.pdl.cmu.edu/ 15

Read Performance (oops!)

0

50

100

150

200

250

300

1 4 16 64 256

Size of Client Reads (kilobytes)

B
a
n

d
w

id
th

 (
M

B
/

s
)

Original PVFS2

Log-structured PVFS2

Checkpoints rarely read, but naive
read strategy should still be improved

 Milo Polte © November 08http://www.pdl.cmu.edu/ 16

Conclusions and Future Work
• Class project results promising potential benefits

for per-file logging on a distributed filesystem
• Read path could still use improvement
• What about other per-file representations?

• Per-file RAID (like PanFS)
• Optimized format for scientific data files (e.g. NetCDF)?
• Other indices

• Per-client logging?
• N-to-N checkpointing behind N-to-1 interface
• No lock contention, false sharing

