Log-structured files for fast
checkpointing

Milo Polte

Jiri Simsa, Wittawat Tantisiriroj,Shobhit Dayal,
Mikhail Chainani, Dilip Kumar Uppugandla, Garth Gibson

PARALLEL DATA LABORATORY

Carnegie Mellon Carnegie Mellon University
Parallel Data Laboratory

Motivation

« HPC systems growing larger
 More nodes
« Larger memory to checkpoint
* More frequent failures
« Application effectiveness means more frequent, larger
checkpoints in same total writing time

« Solutions?
» Fewer failures
« Faster checkpoints

100% -

/ /

= 50%

For this talk:

Want an application generic

solution without special hardware

Application Utilization %
N
Ul
=

(o) O 0O N 0 D K &9 o A ®
Q Q) % ' M \) % Y \“
C TCVICTION A7 A0 A0 40T 40T 40T AT A0 07 40T 40T 407 O
Parallel Data Laboratory Year
http://www.pdl.cmu.edu/ 2 Milo Polte © November 08

Checkpointing

Clients stop work, barrier sync, write state to
shared storage

Large scale
« Thousands of nodes
« Terabytes of data

No app work until checkpoint complete
* Need to be done as quickly as possible
Two possible strategies:

* N-to-N Checkpointing

* N-to-1 Checkpointing

Carnegie Mellon

Parallel Data Laboratory

N-to-N Checkpointing

In N-to-N checkpointing, one file per client
* No per-file writing lock contention

Disk still sees seeks from multiple writers
« Bad disk spindle utilization

Lots of metadata creates
Potentially difficult to manage

Carnegie Mellon
Parallel Data Laboratory

N-to-1 Checkpointing

All clients write their state to a single file in shared
storage

Little metadata traffic

Lock conflicts and many seeks
« Bad disk spindle utilization

Some apps do strided small writes from all nodes

 More lock contention
e Seeks?

What this talk is about

Carnegie Mellon

Pa

rallel Data Laboratory

http://www.pdl.cmu.edu/ 5 Milo Polte © November 08

Log-Structured Writing

* A log can allocate random writes sequentially
« Reduces number of seeks

* Proposed in LFS (Rosenblum, Ousterhout, 1992)
* Implemented in WAFL and PanFS

* Our use for checkpoints inspired by Zest

100

Series of writes: —> Logical Rgpresentatisgn:

pwrite(file, buffer[100], 50, 100);
pwrite(file, buffer, 50, 0); On Disk
pwrite(file, buffer[50], 50, 50); Representation:

"Write 50 bytes at offset 100"
l " "Write 50 bytes at offset 50"

Carnegie Mellon |
Parallel Data Laboratory Write 50 bytes at offset 0

http://www.pdl.cmu.edu/ 6 Milo Polte © November 08

Log-Structured Writing

Series of writes

pwrite(file, buffer[100], 50, 100);
pwrite(file, buffer, 50, 0);
pwrite(file, buffer[50], 50, 50);

In memory buffer

A B C

0 50 100
On disk representation

Lol » 0l e

50 100

Carnegie Mellon
Parallel Data Laboratory

Log structured problems

Can struggle with write random, read sequential

But checkpoints are “write-once read-maybe”
« Hopefully....
Log writing may be inappropriate for entire filesystem

Want option for per-file customized representation

Our idea: Log writing on a per-file representation in a
distributed filesystem
» Assigned as class project in Advanced Storage Systems

Carnegie Mellon
Parallel Data Laboratory

Experimental Design
* Implemented log writing in PVFS2

A distributed parallel filesystem running on Linux
« Storage server modified to write files in log fashion

* Reads scan file for all headers to find latest copy of data

* Could have been implemented at different level
— Library

—-A
— BEffiIesystem considered most universal
* Application: mpi io test
 Benchmark from_LAN_L for an N-to-1 checkpoint
* Preliminary evaluation of 10 clients, single server

Carnegie Mellon
Parallel Data Laboratory

http://www.pdl.cmu.edu/

Milo Polte © November 08

Results - Writes

70
O Original PVFS2

60 M Log-structured PVFS2
@ 50
N
o)
£ 40
<
hd
2
3 30
o
5
a 20

10

0 [| | |
1 4 16 64 256
Size of Client Writes (kilobytes)

Carnegie Mellon
Parallel Data Laboratory

http://www.pdl.cmu.edu/ 10 Milo Polte © November 08

Results - Writes

70
O Original PVFS2

60 | M Log-structured PVFS2
» 50
) : e
Z 40 Implementation oddities
<
whd
o
$ 30 \
-
B 20 <4

10

0 [s
1 4 16 64 256
Size of Client Writes (kilobytes)

Carnegie Mellon
Parallel Data Laboratory

http://www.pdl.cmu.edu/ 11 Milo Polte © November 08

Results - Writes

N
o

O Original PVFS2

(o))
o
|

W Log-structured PVFS2

9]
o

16K: Largest observed
performance improvement

AN
o

W
o

\

Bandwidth (MB/s)

N
o

-
o

3

i

4

Size of Client Writes (kilobytes)

16 64 256

Carnegie Mellon
Parallel Data Laboratory

http://www.pdl.cmu.edu/

12 Milo Polte © November 08

Read Performance (oops!)

300
O Original PVFS2

250 & Log-structured PVFS2
3 200
g
£ 150
E
c 100
2]

50
0 = - L

1 < 16 64 256

Size of Client Reads (kilobytes)

Carnegie Mellon
Parallel Data Laboratory

http://www.pdl.cmu.edu/

13

Milo Polte © November 08

Read Performance (oops!)

Why is read performance so bad?
EACH read scans ALL headers

Checks header... Checks header... Checks header...
Found intersection! § No intersection! Found intersection!

C A B

Student project naive implementation

Better ideas:
* Footers rather than headers for backwards file scan
* Flatten the entire file on the first read

. Keep the index in separate metadata for faster scans
Carnegie Mellon

Parallel Data Laboratory

Read Performance (oops!)

300
O Original PVFS2

250 _| |l Log-structured PVFS2
é 200 Checkpoints rarely read, but naive
= 150 read strategy should still be improved
%
c 100
(11]

50
O | — | I— -

1 4 16 64 256

Size of Client Reads (kilobytes)

Carnegie Mellon
Parallel Data Laboratory

http://www.pdl.cmu.edu/ 15 Milo Polte © November 08

Conclusions and Future Work

Class project results promising potential benefits
for per-file logging on a distributed filesystem

Read path could still use improvement

What about other per-file representations?

« Per-file RAID (like PanFS)

« Optimized format for scientific data files (e.g. NetCDF)?
* Other indices

Per-client logging?

« N-to-N checkpointing behind N-to-1 interface

* No lock contention, false sharing

Carnegie Mellon
Parallel Data Laboratory

http://www.pdl.cmu.edu/ 16 Milo Polte © November 08

