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I/O benchmarking: What’s going on here?

Is my computer’s I/O system “fast”?
Is the I/O system keeping up with my application?
Is the app using the I/O system effectively?
What tools do I need to answer these questions?

And what exactly do I mean by “I/O system” anyway?
• For this talk, an I/O system is everything involved in 

storing data from the filesystem to the storage 
hardware
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Existing tools can measure general or 
application-specific performance

IOzone automatically 
measures I/O system 
performance for different 
operations and parameters
Relatively little ability to 
customize I/O requests

Many application-oriented 
benchmarks
• SWarp, MADbench2…

Interface-specific benchmarks
• IOR, //TRACE6
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Measuring the performance that matters 

System benchmarks only measure general response, 
not application-specific response
Third-party application-based benchmarks may not 
generate the stimulus you care about
In-house applications may not be practical benchmarks
• Difficult for nonexperts to build and run
• Nonpublic source cannot be distributed to vendors 

and collaborators
Need benchmarks that…
• Can be generated and used easily
• Model application-specific characteristics
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Script-based benchmarks emulate real apps

Capture trace data from application and generate the same sequence of 
operations in a replay-benchmark
We began with //TRACE from CMU (Ganger’s group)
• Records I/O events and intervening “compute” times
• Focused on parallel I/O, but much of the infrastructure is useful for our 

sequential I/O work

Application

Capture library

open
compute
read
compute
…

Replay script Replay tool

Script-based benchmark
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Challenges for script-based benchmarking: 
Recording I/O calls at the the right level

fprintf( … );
/* work */
fprintf( … );
/* more work */
fprintf( … );
…

write( … );
open
compute
write
…

Instrumenting at high level
+ Easy with LD_PRELOAD
- Typically generates more 

events, so logs are bigger
- Need to replicate formatting
- Timing includes computation

Instrumenting at low level
+ Fewer types of calls to 

capture
+ Instrumentation is at I/O 

system interface
- Cannot use LD_PRELOAD to 

intercept all calls
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First attempt at capturing system calls: 
Linux strace utility

Records any selected set of system calls
Easy to use: just add to command line
Produces easily parsed output

$ strac

 

e

 

-r -T -s 0 -e trace

 

=file,desc ls
0.000000 execve("/bin/ls", [, ...], [/* 29 v

 

ars */]) = 0 <0.000237>
0.000297 open("/etc/ld.so.cache", O_

 

R

 

D

 

O

 

N

 

L

 

Y) = 3 <

 

0.000047

 

>
0.000257 fstat64(3, {st_m

 

o

 

d

 

e

 

=

 

S

 

_

 

IF

 

R

 

E

 

G|0644, st_

 

size=64677, ...}) = 0 <

 

0.0

 

0

 

0

 

0

 

3

 

3

 

>
0.000394 close(3)                  = 0 <0.000015>
0.000230 open("/lib/librt.so.1", O_R

 

D

 

O

 

NLY) = 3 <0.000046>
0.000289 read(3, ""..., 512)       = 512 <0.000028>
...
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Strace results look reasonably accurate, 
but overall runtime is exaggerated
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For accurate recording, gather I/O calls using 
binary instrumentation

Can intercept and instrument specific system-level calls
Overhead of instrumentation is paid at program startup
Existing Jockey library works well for x86_32, but not ported to
other platforms
Replay can be portable, though

mov 4 (%esp), %ebx

int $0x80

ret

mov $0x4, %eax      

save current statemov 4 (%esp), %ebx

nop

ret

jmp to trampoline call my write function

restore state

jmp to original code

InstrumentedUninstrumented
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Issues for accurate replay

Replay engine must be able to 
read and parse events quickly
Reading script must not 
interfere significantly with I/O 
activities being replicated
Script must be portable across 
platforms

Accurate replay
Minimize I/O impact of reading 
script

Correctly reproduce inter-event 
delays

open
compute
write
…

Replayed I/O events
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Accurate replay: 
Preparsing, compression, and buffering

Text-formatted output script is portable across platforms
Instrumentation output is parsed into binary format and 
compressed (~30:1)
• Conversion done on target platform

Replay engine reads and buffers script data during “compute”
phases between I/O events

open
compute
write
…

010010
110101
010110
…

…
…

preparsing compression buffering
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Replay timing and profile match original 
application well
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Things that didn’t help

Compressing text script as it’s generated
• Only 2:1 compression
• Time of I/O events themselves are not what’s very 

important during instrumentation phase
Replicating the memory footprint
• Memory used by application is taken from same pool 

as I/O buffer cache
• Smaller application (like the replay engine) should 

go faster because more buffer space available
• Replicated memory footprint by tracking brk() and 

mmap() calls, but it made no difference!
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Conclusions on script-based I/O benchmarking

Gathering accurate I/O traces is harder than it seems
• Currently, no solution is both portable and efficient

Replay is easier, but efficiency still matters
Many possibilities for future work—which matter most?
• File name transformation
• Parallel trace and replay
• More portable instrumentation
• How to monitor mmap’d I/O?
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