
Lawrence Livermore National Laboratory

Pianola: A script-based I/O benchmark

Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551
This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

John May
PSDW08, 17 November 2008

LLNL-PRES-406688

2
Lawrence Livermore National Laboratory

I/O benchmarking: What’s going on here?

Is my computer’s I/O system “fast”?
Is the I/O system keeping up with my application?
Is the app using the I/O system effectively?
What tools do I need to answer these questions?

And what exactly do I mean by “I/O system” anyway?
• For this talk, an I/O system is everything involved in

storing data from the filesystem to the storage
hardware

3
Lawrence Livermore National Laboratory

Existing tools can measure general or
application-specific performance

IOzone automatically
measures I/O system
performance for different
operations and parameters
Relatively little ability to
customize I/O requests

Many application-oriented
benchmarks
• SWarp, MADbench2…

Interface-specific benchmarks
• IOR, //TRACE6

4

2
5

6

1
0

2
4

4
0

9
6

1
6

3
8

4

6
5

5
3

6

2
6

2
1

4
4

1
0

4
8

5
7

6

4
1

9
4

3
0

4

4

32

256

2048

16384

0

100000

200000

300000

400000

500000

600000

KB/sec

File size (KB)

Record size (KB)

Write new file

500000-600000
400000-500000
300000-400000
200000-300000
100000-200000
0-100000

4
Lawrence Livermore National Laboratory

Measuring the performance that matters

System benchmarks only measure general response,
not application-specific response
Third-party application-based benchmarks may not
generate the stimulus you care about
In-house applications may not be practical benchmarks
• Difficult for nonexperts to build and run
• Nonpublic source cannot be distributed to vendors

and collaborators
Need benchmarks that…
• Can be generated and used easily
• Model application-specific characteristics

5
Lawrence Livermore National Laboratory

Script-based benchmarks emulate real apps

Capture trace data from application and generate the same sequence of
operations in a replay-benchmark
We began with //TRACE from CMU (Ganger’s group)
• Records I/O events and intervening “compute” times
• Focused on parallel I/O, but much of the infrastructure is useful for our

sequential I/O work

Application

Capture library

open
compute
read
compute
…

Replay script Replay tool

Script-based benchmark

6
Lawrence Livermore National Laboratory

Challenges for script-based benchmarking:
Recording I/O calls at the the right level

fprintf(…);
/* work */
fprintf(…);
/* more work */
fprintf(…);
…

write(…);
open
compute
write
…

Instrumenting at high level
+ Easy with LD_PRELOAD
- Typically generates more

events, so logs are bigger
- Need to replicate formatting
- Timing includes computation

Instrumenting at low level
+ Fewer types of calls to

capture
+ Instrumentation is at I/O

system interface
- Cannot use LD_PRELOAD to

intercept all calls

7
Lawrence Livermore National Laboratory

First attempt at capturing system calls:
Linux strace utility

Records any selected set of system calls
Easy to use: just add to command line
Produces easily parsed output

$ strac

e

-r -T -s 0 -e trace

=file,desc ls
0.000000 execve("/bin/ls", [, ...], [/* 29 v

ars */]) = 0 <0.000237>
0.000297 open("/etc/ld.so.cache", O_

R

D

O

N

L

Y) = 3 <

0.000047

>
0.000257 fstat64(3, {st_m

o

d

e

=

S

_

IF

R

E

G|0644, st_

size=64677, ...}) = 0 <

0.0

0

0

0

3

3

>
0.000394 close(3) = 0 <0.000015>
0.000230 open("/lib/librt.so.1", O_R

D

O

NLY) = 3 <0.000046>
0.000289 read(3, ""..., 512) = 512 <0.000028>
...

8
Lawrence Livermore National Laboratory

Strace results look reasonably accurate,
but overall runtime is exaggerated

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200 250 300 350 400 450

Execution Time

Application Read Application Write Replay Read Replay Write

Read (sec.) Write (sec.) Elapsed (sec.)

Uninstrumented -- -- 324
Instrumented
Application

41.8 11.8 402

Replay 37.0 11.8 390

9
Lawrence Livermore National Laboratory

For accurate recording, gather I/O calls using
binary instrumentation

Can intercept and instrument specific system-level calls
Overhead of instrumentation is paid at program startup
Existing Jockey library works well for x86_32, but not ported to
other platforms
Replay can be portable, though

mov 4 (%esp), %ebx

int $0x80

ret

mov $0x4, %eax

save current statemov 4 (%esp), %ebx

nop

ret

jmp to trampoline call my write function

restore state

jmp to original code

InstrumentedUninstrumented

10
Lawrence Livermore National Laboratory

Issues for accurate replay

Replay engine must be able to
read and parse events quickly
Reading script must not
interfere significantly with I/O
activities being replicated
Script must be portable across
platforms

Accurate replay
Minimize I/O impact of reading
script

Correctly reproduce inter-event
delays

open
compute
write
…

Replayed I/O events

11
Lawrence Livermore National Laboratory

Accurate replay:
Preparsing, compression, and buffering

Text-formatted output script is portable across platforms
Instrumentation output is parsed into binary format and
compressed (~30:1)
• Conversion done on target platform

Replay engine reads and buffers script data during “compute”
phases between I/O events

open
compute
write
…

010010
110101
010110
…

…
…

preparsing compression buffering

12
Lawrence Livermore National Laboratory

Replay timing and profile match original
application well

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350 400

Execution Time

Application Read Application Write Replay Read Replay Write

Read (sec.) Write (sec.) Elapsed(sec.)

Uninstrumented -- -- 314
Instrumented
Application

35.8 12.8 334

Replay 35.7 12.5 319

13
Lawrence Livermore National Laboratory

Things that didn’t help

Compressing text script as it’s generated
• Only 2:1 compression
• Time of I/O events themselves are not what’s very

important during instrumentation phase
Replicating the memory footprint
• Memory used by application is taken from same pool

as I/O buffer cache
• Smaller application (like the replay engine) should

go faster because more buffer space available
• Replicated memory footprint by tracking brk() and

mmap() calls, but it made no difference!

14
Lawrence Livermore National Laboratory

Conclusions on script-based I/O benchmarking

Gathering accurate I/O traces is harder than it seems
• Currently, no solution is both portable and efficient

Replay is easier, but efficiency still matters
Many possibilities for future work—which matter most?
• File name transformation
• Parallel trace and replay
• More portable instrumentation
• How to monitor mmap’d I/O?

	Pianola: A script-based I/O benchmark
	I/O benchmarking: What’s going on here?
	Existing tools can measure general or application-specific performance
	Measuring the performance that matters
	Script-based benchmarks emulate real apps
	Challenges for script-based benchmarking:�Recording I/O calls at the the right level
	First attempt at capturing system calls:�Linux strace utility
	Strace results look reasonably accurate,�but overall runtime is exaggerated
	For accurate recording, gather I/O calls using binary instrumentation
	Issues for accurate replay
	Accurate replay:�Preparsing, compression, and buffering
	Replay timing and profile match original application well
	Things that didn’t help
	Conclusions on script-based I/O benchmarking

