Zest 1/O

Paul Nowoczynski, Jared Yanovich
Advanced Systems, Pittsburgh Supercomputing Center

A0 01110100

PDSW '08 Austin, TX



Zest - What is it?

Pittsburgh Supercomputing Center

Parallel I/0 system designed to optimize the compute
I/O subsystem for checkpointing / application
snapshotting.

" Write() focused optimizations — transitory cache with no
application read() capability.

" Expose about 90% of the total spindle bandwidth to the
application, reliably.

" Emphasizes the use of commodity hardware

" End-to-end design.

* Client to the disk and everything in between.



Pittsburgh Supercomputing Center

Designed and implemented by the PSC Advanced Systems
Group (Nowoczynski, Yanovich, Stone, Sommerfield).

Work began in September '06.
Prototype development took about one year.

Currently most major features are implemented and 1n test.



Zest — Why checkpointing?

Pittsburgh Supercomputing Center

Checkpointing 1s the dominant I/O activity on most
HPC systems.

Its characteristics lead to interesting opportunities to

for optimization:
" 'N' checkpoint writes for every 1 read.
" Periodic, heavy bursts followed by long latent periods.

" Data does not need to be immediately available for reading.



Zest - The impetus.
Pittsburgh Supercomputing Center

Compute performance 1s greatly outpacing storage
system performance.

As a result.. Storage system costs are consuming an

increasing percentage of the overall machine budget.

Over the last 7-8 years performance trends have not been
in favor of I/O systems

" Memory capacities in the largest machines have increased
by~25x

* Disk bandwidth by ~4x



Zest: What can be optimized today?

Pittsburgh Supercomputing Center

Opportunities for optimization in today's parallel I/0
systems — do they exist? YES

Current systems deliver end-to-end performance which is a
fraction of their aggregate spindle bandwidth.

If this bandwidth could be reclaimed 1t would mean:
* Fewer storage system components
" Less failures
" Lower maintenance, management, and power costs

* Improved cost effectiveness for HPC storage systems.



Zest: Why is spindle efficiency poor?
Pittsburgh Supercomputing Center

Several reasons have been observed:

= Aggregate spindle bandwidth is greater than the bandwidth of
the at least one of the connecting busses.

* Parity calculation engine is a bottleneck.

" Sub-optimal LBA request ordering caused by the filesystem and/
or the RAID layer.

The first two factors may be rectified with better storage
hardware..

The last is the real culprit and is not as easily remedied!



Zest: Software stacks aren't helping.
Pittsburgh Supercomputing Center

Today's storage software architectures (filesystems / raid)
generally do not enable disk drives to work in their most
efficient mode.

Overly deterministic data placement schemes result in loss of
disk efficiency due to seek'ing.

" Pre-determined data placement is the result of inferential
metadata models employed by:

“ Object-based parallel filesystems
7 Raid Systems

" These models are extremely effective at their task but result in
data being forced to specific regions on specific disk drives.

“ Results in disk work queues which are not sequentially ordered.



Pittsburgh Supercomputing Center

Current data placement schemes complicate performance 1n
degraded scenarios.

Object-based metadata and RAID subsystems expect data to be
placed 1n a specific location.

Difficult or impossible to route write requests around a slow or
failed server once I/0 has commenced.

In the current parallel I/O paradigm, these factors have the
potential to drastically hurt scalability and performance
consistency.



Pittsburgh Supercomputing Center

Zest uses several methods to minimize seeking and
optimize write performance.

Each disk 1s controlled by single I/O thread.

Non-deterministic data placement. (NDDP)

Client generated parity.
No Leased locks



Pittsburgh Supercomputing Center

One thread per-disk.
Exclusive access prevents thrashing.

Rudimentary scheduler for managing data reconstruction
requests, incoming writes, and reclamation activities.

Maintains free block map
Capable of using any data block at any address

Facilitates sequential access through

Pulls incoming data blocks from a single or multiple queues
called “Raid Vectors”.



Pittsburgh Supercomputing Center

Queues on which incoming write buffers are placed to be
consumed by the disk threads.

Ensures that blocks of differing parity positions are not placed
on the same disk.

Multiple drives may be assigned to a RV.

Blocks are pulled from the queue as the disks are ready.

Slow devices do less works, failed devices are removed.

> | disk per RV creates a second degree of



Raid Vectors

| e e
ééééé%éééééééééé

SSSSSSSSS




Zest: Non-deterministic placement
Pittsburgh Supercomputing Center

Non-determinism on many levels:

* Any parity stripe or group may be handled by any ZestION.
“ Slow nodes may be fully or partially bypassed

* Any disk in a Raid Vector may process any block on that vector.
“ Assumes that ndisks > (2 x raid stripe width)

= Disk I/0 thread may place data block at the location of his choosing.
“ Encourages sequential I/0 patterns.

Performance is not negatively impacted by the number of clients or
the degree of randomization within the incoming data streams.



Pittsburgh Supercomputing Center

Much of the hard work 1s placed onto the client preventing the
ZestION from being a bottleneck.

Data blocks are Crc'd and later verified by the ZestION during
the post-processing phase.

Data verification can be accomplished without read back of the
entire parity group.

Client computed parity eliminates the need for backend raid
controllers.

Client caches are not page based but vector-based.

No global page locks needed.

Further eliminates server overhead and complexity.



Zest: NDDP - the cost..

Pittsburgh Supercomputing Center

Increasing entropy allows for more flexibility but more

bookkeeping is required.

NDDP destroys two inferential systems, one we care about the
other 1s not as critical (right now).

" Block level Raid is no longer semantically relevant.

" Tracking extents, globally, would be expensive.



Pittsburgh Supercomputing Center

Declustered Parity Groups
Parity group membership can no longer be inferred.

Data and parity blocks are tagged with unique identitiers
that prove their association.

Important for determining status upon system reboot.

Parity group state 1s maintained on separate device.

Lookups are down with diskID, blockID pair.



Pittsburgh Supercomputing Center

File Extent Management

Object-based parallel file systems (1.e. Lustre) use file-object maps to
describe the location of a file's data.

Map 1s composed of the number of stripes, the stride, and the starting
stripe.

Given this map, the location of any file offset may be computed.

Providing native read support would require the tracking of a file's
offset, length pairs.

Extent storage 1s parallelizable.



Pittsburgh Supercomputing Center

Since any parity group may be written to any 1/0O
Server:

Failure of a single I/O server does not create a hot-spot in the
storage network.

Requests bound for the failed node may be evenly redistributed to
the remaining nodes.

Checkpoint bandwidth partitioning on a per-job basis 1s possible.



Pittsburgh Supercomputing Center

Begins once the data ingest phase has halted or
slowed.

Current post-processing technique rewrites the data into a
lustre filesystem. (syncing)

In the future, other data processing routines could make use
of the same internal infrastructure..



Pittsburgh Supercomputing Center
How does Zest sync file data?

Zest files are 'objects' identified by their Lustre inode
number.

These are hardlinked to their lustre equivalents on create().

On write() the client:
The data buffer

Metadata slab containing:

Inode number, Crc, Extent list, etc.

Syncing is done using the hardlinked immutable path, the
inode, and the extent list.



Zest: Reliability

Pittsburgh Supercomputing Center

Zest provides reliability on par with a typical HPC 1/O
system.

" Data redundancy through Raid.

" Recoverability via multi-homed disk configuration.

Zest supports hardware configurations such as the

following.



PCle

SAS Links

T

Service and [/O

Zest I/0 Node
Dual Qual-Core

IB Links

Disk Drive Shelves

SATA drives

* No single point of failure




Pittsburgh Supercomputing Center
Support for failover pairs.

Zest superblocks are tagged with UUIDs to avoid confusion in shared

disk configurations.

On reboot, corrupt or missing data is rebuilt,
unsynchronized data 1s rectified.

Certain modes of disk failure are easily detected and the 1I/0

thread 1s quarantined.

'Fast rebuild' 1s supported.

When a disk fails, the Zest server has an list, in memory, of all the active
blocks. Those blocks can rebuilt immediately without scanning the

entire set.



Pittsburgh Supercomputing Center

Test consisted of sequentially writing from each PE into a
separate file.

Clients used a 7+1 Raid5 parity scheme (12.5% overhead)

2 x 4 Core Intel Processors
Multiple PCI-e Busses

1 Sas Controllers

1 IB Interface (DDR)

12 Drives (@75MB/s per)



rate (ME-sec)

128 r

disk I«<0 performance for writes on “dewssgl

11@

Zesﬁ::

Single Disk Rate

7~

bhezier
points

1@

Pittsburgh Supercomputing Center

LS

CHEEEE

4AEARA 2ys]ss]s]x] SREBEAA le+86 1.2e+86 1.4e+86
disk offset (512KE hlocksizel

1.6e+8



Pittsburgh Supercomputing Center

By itself, the Zest backend can easily reach 90%
efficiency.

12 disks@860MB/s

Very low CPU utilization due to zero-copy and scsi
generic 1/0 (sg)

About 5% of 8 cores.



Zest Performance - Linux
cluster

Zest Server Performance

Storing Large Sequential Streams
1000

900

800
700
600
500
400
300
200
100 .
2,1 4.1 8,1 32,1 24,3 96,3

0
8,18 16,1

MBytes/s

ST

1,1

Client Configurations (PEs, # of clients)



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

