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The Need for More Reliable RAID

Lack of Failure Prediction
I SMART
I MTTF

Larger Disks
I Stagnating Speeds
I Bit-Error Rates

Correlated Failures
I Batch-Correlated Failures
I Environment-Related Failures

Matthew Curry, et. al (UAB/SNL) GPU RAID November 17th, 2008 2 / 11



Current Method: Nested RAID

Stripe data over several RAID arrays
I RAID 1 + 0: Stripe over multiple RAID 1 sets
I RAID 5 + 0: Stripe over multiple RAID 5 sets
I RAID 6 + 0: Stripe over multiple RAID 6 sets

Reliability is marginally improved over non-“+0” variants, while
requiring significantly more hardware.
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Enabling RAID N+3 and Beyond

Need a fast method of creating arbitrary amounts of parity
Reed-Solomon Coding is an obvious solution, but performance is
lacking
On an x86-based CPU, performance is limited to approximately 90
MB/s per core to do n + 3 parity
Main limitation: A lack of the ability to do parallel table lookups, a
crucial optimization for Reed-Solomon coding
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GPU Architecture

Figure: G80 Architecture
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Framing the Experiment
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Generation Performance
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Recovery Performance
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Percentage of Time in PCI Transfer
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Conclusions

A $300 GPU can support the workload of a sizable RAID array
that can support any three disks failing.

I 16-disk array at 100 MB/s per disk (vs. 7 for CPU)
I 32-disk array at 51 MB/s per disk (vs. 4 for CPU)

PCI-Express transfers can be fully hidden by the computation
when done in parallel
Future work includes building a working RAID system which
includes this component (which will be available soon).
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Thank you.

Matthew Curry
curryml@cis.uab.edu
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