
Arbitrary Dimension Reed-Solomon Coding and
Decoding for Extended RAID on GPUs

Matthew Curry, H. Lee Ward, Anthony Skjellum, and Ron Brightwell

University of Alabama at Birmingham

Sandia National Laboratories

November 17th, 2008

Matthew Curry, et. al (UAB/SNL) GPU RAID November 17th, 2008 1 / 11

The Need for More Reliable RAID

Lack of Failure Prediction
I SMART
I MTTF

Larger Disks
I Stagnating Speeds
I Bit-Error Rates

Correlated Failures
I Batch-Correlated Failures
I Environment-Related Failures

Matthew Curry, et. al (UAB/SNL) GPU RAID November 17th, 2008 2 / 11

Current Method: Nested RAID

Stripe data over several RAID arrays
I RAID 1 + 0: Stripe over multiple RAID 1 sets
I RAID 5 + 0: Stripe over multiple RAID 5 sets
I RAID 6 + 0: Stripe over multiple RAID 6 sets

Reliability is marginally improved over non-“+0” variants, while
requiring significantly more hardware.

Matthew Curry, et. al (UAB/SNL) GPU RAID November 17th, 2008 3 / 11

Enabling RAID N+3 and Beyond

Need a fast method of creating arbitrary amounts of parity
Reed-Solomon Coding is an obvious solution, but performance is
lacking
On an x86-based CPU, performance is limited to approximately 90
MB/s per core to do n + 3 parity
Main limitation: A lack of the ability to do parallel table lookups, a
crucial optimization for Reed-Solomon coding

Matthew Curry, et. al (UAB/SNL) GPU RAID November 17th, 2008 4 / 11

GPU Architecture

Figure: G80 Architecture

Matthew Curry, et. al (UAB/SNL) GPU RAID November 17th, 2008 5 / 11

Framing the Experiment

GPU AccumulateBuffer GPU Operate

Buffer

...Disk 0 Disk 1 Disk 2 Disk 3 Disk
n+m

Driver copies write
request data to
accumulation

buffers

Buffers rotate as
GPU finishes operating

on Operate Buffer

Retire write
request and
complete

asynchronously

Operating System Kernel

Network
Buffer

Block
Buffer
Cache

Network
Buffer

Driver
(Finish

Request)

Disk Writeout
Buffer

iScsi Request

iScsi Reply

Network Packet

Network Packet

Contents of
Operate Buffer
Transferred to
GPU Memory

GPU (Parity Calculation Performed)

Matthew Curry, et. al (UAB/SNL) GPU RAID November 17th, 2008 6 / 11

Generation Performance

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 500 1000 1500 2000

T
hr

ou
gh

pu
t (

M
B

/s
)

Size of Input (KB)

Parity Generation Performance

NVIDIA 260: 13+3
NVIDIA 260: 29+3
Core 2 Duo: 13+3
Core 2 Duo: 29+3

Figure: Throughput of Generation of m Blocks with 2MB Maximum Buffer

Matthew Curry, et. al (UAB/SNL) GPU RAID November 17th, 2008 7 / 11

Recovery Performance

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 500 1000 1500 2000

T
hr

ou
gh

pu
t (

M
B

/s
)

Size of Input (KB)

Data Recovery Performance

NVIDIA 260: 13+3
NVIDIA 260: 29+3
Core 2 Duo: 13+3
Core 2 Duo: 29+3

Figure: Throughput of Recovery from m Failures with 2MB Maximum Buffer

Matthew Curry, et. al (UAB/SNL) GPU RAID November 17th, 2008 8 / 11

Percentage of Time in PCI Transfer

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

Size of Input (KB)

Percentage of Time Performing PCI Transfer

13+3
29+3

Figure:

Matthew Curry, et. al (UAB/SNL) GPU RAID November 17th, 2008 9 / 11

Conclusions

A $300 GPU can support the workload of a sizable RAID array
that can support any three disks failing.

I 16-disk array at 100 MB/s per disk (vs. 7 for CPU)
I 32-disk array at 51 MB/s per disk (vs. 4 for CPU)

PCI-Express transfers can be fully hidden by the computation
when done in parallel
Future work includes building a working RAID system which
includes this component (which will be available soon).

Matthew Curry, et. al (UAB/SNL) GPU RAID November 17th, 2008 10 / 11

Thank you.

Matthew Curry
curryml@cis.uab.edu

Matthew Curry, et. al (UAB/SNL) GPU RAID November 17th, 2008 11 / 11

